{"title":"Investigating the influence of diet diversity on infection outcomes in a bumble bee (Bombus impatiens) and microsporidian (Nosema bombi) host-pathogen system","authors":"Abraham Martinez, Austin C. Calhoun, B. Sadd","doi":"10.3389/finsc.2023.1207058","DOIUrl":"https://doi.org/10.3389/finsc.2023.1207058","url":null,"abstract":"Diet can have an array of both direct and indirect effects on an organism’s health and fitness, which can influence the outcomes of host-pathogen interactions. Land use changes, which could impact diet quantity and quality, have imposed foraging stress on important natural and agricultural pollinators. Diet related stress could exacerbate existing negative impacts of pathogen infection. Accounting for most of its nutritional intake in terms of protein and many micronutrients, pollen can influence bee health through changes in immunity, infection, and various aspects of individual and colony fitness. We investigate how adult pollen consumption, pollen type, and pollen diversity influence bumble bee Bombus impatiens survival and infection outcomes for a microsporidian pathogen Nosema (Vairimorpha) bombi. Experimental pathogen exposures of larvae occurred in microcolonies and newly emerged adult workers were given one of three predominantly monofloral, polyfloral, or no pollen diets. Workers were assessed for size, pollen consumption, infection 8-days following adult-eclosion, survival, and the presence of extracellular microsporidian spores at death. Pollen diet treatment, specifically absence of pollen, and infection independently reduced survival, but we saw no effects of pollen, pollen type, or pollen diet diversity on infection outcomes. The latter suggests infection outcomes were likely already set, prior to differential diets. Although infection outcomes were not altered by pollen diet in our study, it highlights both pathogen infection and pollen availability as important for bumble bee health, and these factors may interact at different stages of bumble bee development, at the colony level, or under different dietary regimes.","PeriodicalId":106657,"journal":{"name":"Frontiers in Insect Science","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127265154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Allium leafminer (Diptera: Agromyzidae) host preference: implications for developing a trap cropping strategy","authors":"Pin-Chu Lai, R. K. Sandhi, B. Nault","doi":"10.3389/finsc.2023.1233130","DOIUrl":"https://doi.org/10.3389/finsc.2023.1233130","url":null,"abstract":"Allium leafminer (Phytomyza gymnostoma Loew) is an emerging invasive pest of Allium crops and has been threatening Allium crop production in the eastern United States since its introduction in 2015. Phytomyza gymnostoma can cause substantial economic loss in leek crops when late instars tunnel into the lower portion of the plant, which often renders the crop unmarketable. With limited management tools that are cost-effective and practical, especially for leeks produced in organic systems, we examined the attractiveness of other Allium crop species that might be considered in a trap cropping strategy. In 2021 and 2022, controlled environment choice tests and field trials were conducted to evaluate host preference of P. gymnostoma among Allium crop species including chives, scallion, an onion and scallion hybrid, and leek. We also assessed preference of P. gymnostoma for scallions that varied in size/age. Results from field trials indicated that only chives had more oviposition marks, cumulative numbers of eggs, and a higher density of P. gymnostoma larvae and pupae than leeks. Larger/older scallions had more oviposition marks and higher P. gymnostoma densities than smaller ones in controlled environment choice tests, but this size/age preference was not evident in field trials. Based on our findings, chives could be considered as a potential trap crop for minimizing P. gymnostoma damage in leek crops.","PeriodicalId":106657,"journal":{"name":"Frontiers in Insect Science","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121215031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sochanngam Kashung, P. Bhardwaj, M. Saikia, S. Mazumdar-Leighton
{"title":"Midgut serine proteinases participate in dietary adaptations of the castor (Eri) silkworm Samia ricini Anderson transferred from Ricinus communis to an ancestral host, Ailanthus excelsa Roxb","authors":"Sochanngam Kashung, P. Bhardwaj, M. Saikia, S. Mazumdar-Leighton","doi":"10.3389/finsc.2023.1169596","DOIUrl":"https://doi.org/10.3389/finsc.2023.1169596","url":null,"abstract":"Dietary change influenced the life-history traits, nutritional utilization, and midgut serine proteinases in the larvae of the domesticated polyphagous S. ricini, transferred from R. communis (common name: castor; family Euphorbiaceae; the host plant implicated in its domestication) to A. excelsa (common name: Indian tree of heaven; family Simaroubaceae; an ancestral host of wild Samia species). Significantly higher values for fecundity and body weight were observed in larvae feeding on R. communis (Scr diet), and they took less time to reach pupation than insects feeding on A. excelsa (Scai diet). Nevertheless, the nutritional index for efficiency of conversion of digested matter (ECD) was similar for larvae feeding on the two plant species, suggesting the physiological adaptation of S. ricini (especially older instars) to an A. excelsa diet. In vitro protease assays and gelatinolytic zymograms using diagnostic substrates and protease inhibitors revealed significantly elevated levels (p ≤ 0.05) of digestive trypsins, which may be associated with the metabolic costs influencing slow growth in larvae feeding on A. excelsa. RT-PCR with semidegenerate serine proteinase gene-specific primers, and cloning and sequencing of 3′ cDNA ends identified a large gene family comprising at least two groups of putative chymotrypsins (i.e., Sr I and Sr II) resembling invertebrate brachyurins/collagenases with wide substrate specificities, and five groups of putative trypsins (i.e., Sr III, Sr IV, Sr V, Sr VII, and Sr VIII). Quantitative RT-PCR indicated that transcripts belonging to the Sr I, Sr III, Sr IV, and Sr V groups, especially the Sr IV group (resembling achelase I from Lonomia achelous), were expressed differentially in the midguts of fourth instars reared on the two plant species. Sequence similarity indicated shared lineages with lepidopteran orthologs associated with expression in the gut, protein digestion, and phytophagy. The results obtained are discussed in the context of larval serine proteinases in dietary adaptations, domestication, and exploration of new host plant species for commercial rearing of S. ricini.","PeriodicalId":106657,"journal":{"name":"Frontiers in Insect Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129123328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Steven C. Cook, Eugene V. Ryabov, Christian Becker, Curtis W. Rogers, Francisco Posada-Florez, Jay D. Evans, Yan Ping Chen
{"title":"Deformed wing virus of honey bees is inactivated by cold plasma ionized hydrogen peroxide","authors":"Steven C. Cook, Eugene V. Ryabov, Christian Becker, Curtis W. Rogers, Francisco Posada-Florez, Jay D. Evans, Yan Ping Chen","doi":"10.3389/finsc.2023.1216291","DOIUrl":"https://doi.org/10.3389/finsc.2023.1216291","url":null,"abstract":"Deformed wing virus (DWV) is a widespread pathogen of Apis mellifera honey bees, and is considered a major causative factor for the collapse of infected honey bee colonies. DWV can be horizontally transmitted among bees through various oral routes, including via food sharing and by interactions of bees with viral-contaminated solid hive substrates. Cold plasma ionized hydrogen peroxide (iHP) is used extensively by the food production, processing and medical industries to clean surfaces of microbial contaminants. In this study, we investigated the use of iHP to inactivate DWV particles in situ on a solid substrate. iHP-treated DWV sources were ~10 5 -fold less infectious when injected into naïve honey bee pupae compared to DWV receiving no iHP treatment, matching injected controls containing no DWV. iHP treatment also greatly reduced the incidence of overt DWV infections (i.e., pupae having >10 9 copies of DWV). The level of DWV inactivation achieved with iHP treatment was higher than other means of viral inactivation such as gamma irradiation, and iHP treatment is likely simpler and safer. Treatment of DWV contaminated hive substrates with iHP, even with honey bees present, may be an effective way to decrease the impacts of DWV infection on honey bees.","PeriodicalId":106657,"journal":{"name":"Frontiers in Insect Science","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135015547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Allometric approach to the two male morphs in the Japanese firefly Luciola parvula","authors":"Y. Iguchi","doi":"10.3389/finsc.2023.1230363","DOIUrl":"https://doi.org/10.3389/finsc.2023.1230363","url":null,"abstract":"","PeriodicalId":106657,"journal":{"name":"Frontiers in Insect Science","volume":"67 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125318272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The importance of time in nutrient regulation: a case study with spotted-wing Drosophila (Drosophila suzukii)","authors":"C. Deans, W. Hutchison","doi":"10.3389/finsc.2023.1105531","DOIUrl":"https://doi.org/10.3389/finsc.2023.1105531","url":null,"abstract":"The ability of living organisms to acquire the nutrients needed to carry out required physiological functions has important consequences for fitness. However, an organism must not simply meet the requirements for individual nutrients, but must ingest an optimal balance of multiple nutrients. Despite this, animals rarely consume truly balanced resources, and instead commonly feed selectively across multiple unbalanced resources to reach an optimal balance, i.e., intake target. Nutritional research has predominantly focused on the behavioral strategies employed during nutrient regulation, as well as the fitness consequence of failing to meet intake targets, but little work has been done on the temporal aspects of this process. For instance, within what timeframe must organisms reach their intake target before a fitness cost is incurred? Hours, days, weeks?In this study, we investigated how nutrient regulation interval impacts consumption and performance in adult female spotted-wing Drosophila (Drosophila suzukii). Females were constrained to either a protein- orcarbohydrate-biased diet over different time intervals and at different schedules, while control flies were constrained to one diet for the entire feeding period.Regulation interval had a significant impact on feeding behavior and consumption. Total consumption was highest on the shorter interval treatments, where diets were alternated more frequently, and declined as the interval period increased. The relative consumption of both diets was statistically-different across intervals and was higher for the carbohydrate-biased diet. Consumption of the protein-biased diet was more variable across intervals and was more strongly impacted by the daily timing of diet switches. Performance data showed that shorter regulation intervals led to longer fly lifespans, a result commonly observed in studies exploring the impacts of diet macronutrient ratio variability on performance.These results show that the temporal aspects of nutrition, such as feeding intervals and the timing of resource availability, can have strong impacts on feeding behavior, nutrient regulation, and fitness. These results provide an insight into how consumers may deal with changes in host phenology, the availability of hosts, and changes in nutrient availability within hosts. Understanding these mechanisms will be important for predicting responses to changes in nutrient cycling and resource availability mediated by natural and anthropogenic habitat modifications, such as global climate change.","PeriodicalId":106657,"journal":{"name":"Frontiers in Insect Science","volume":"205 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115311159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonah Brosemann, R. Overson, Arianne J. Cease, Sydney Millerwise, Marion Le Gall
{"title":"Nutrient supply and accessibility in plants: effect of protein and carbohydrates on Australian plague locust (Chortoicetes terminifera) preference and performance","authors":"Jonah Brosemann, R. Overson, Arianne J. Cease, Sydney Millerwise, Marion Le Gall","doi":"10.3389/finsc.2023.1110518","DOIUrl":"https://doi.org/10.3389/finsc.2023.1110518","url":null,"abstract":"In contrast to predictions from nitrogen limitation theory, recent studies have shown that herbivorous migratory insects tend to be carbohydrate (not protein) limited, likely due to increased energy demands, leading them to preferentially feed on high carbohydrate plants. However, additional factors such as mechanical and chemical defenses can also influence host plant choice and nutrient accessibility. In this study, we investigated the effects of plant protein and carbohydrate availability on plant selection and performance for a migratory generalist herbivore, the Australian plague locust, Chortoicetes terminifera. We manipulated the protein and carbohydrate content of seedling wheat (Triticum aestivum L.) by increasing the protein:carbohydrate ratio using nitrogen (N) fertilizer, and manipulated the physical structure of the plants by grinding and breaking down cell walls after drying the plants. Using a full factorial design, we ran both choice and no-choice experiments to measure preference and performance. We confirmed locust preference for plants with a lower protein-carbohydrate ratio (unfertilized plants). Unlike previous studies with mature wild grass species, we found that intact plants supported better performance than dried and ground plants, suggesting that cell wall removal may only improve performance for tougher or more carbohydrate-rich plants. These results add to the growing body of evidence suggesting that several migratory herbivorous species perform better on plants with a lower protein:carbohydrate ratio.","PeriodicalId":106657,"journal":{"name":"Frontiers in Insect Science","volume":"79 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114093878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Ranger, Madhav Parajuli, S. Gresham, Jenny Barnett, S. Villani, J. Walgenbach, F. Baysal-Gurel, J. Owen, M. Reding
{"title":"Type and duration of water stress influence host selection and colonization by exotic ambrosia beetles (Coleoptera: Curculionidae)","authors":"C. Ranger, Madhav Parajuli, S. Gresham, Jenny Barnett, S. Villani, J. Walgenbach, F. Baysal-Gurel, J. Owen, M. Reding","doi":"10.3389/finsc.2023.1219951","DOIUrl":"https://doi.org/10.3389/finsc.2023.1219951","url":null,"abstract":"Fungus-farming ambrosia beetles in the tribe Xyleborini tunnel into plants and trees to establish chambers for cultivating their nutritional fungal mutualists and rearing offspring. Some xyleborine ambrosia beetles preferentially infest and perform better in living but weakened trees. Flood stress predisposes horticultural tree crops to infestation, but the impact of drought stress has not been well studied. Our objectives were to compare the effects of flood stress vs. drought stress on host selection and colonization by xyleborine ambrosia beetles and to assess the duration of flooding. Container-grown Cornus florida L. trees were flood stressed using a pot-in-pot system to submerge the roots in water while drought-stressed conditions were imposed by withholding irrigation and precipitation. When experimental trees were held under field conditions for 14 days, 7.5 × more ambrosia beetles landed on stems of the flood-stressed than on the drought-stressed trees. During two additional experiments over 14 and 22 days, ambrosia beetles tunneled into the flood-stressed trees but not the drought-stressed or standard irrigation trees. By simultaneously deploying trees that were flood stressed for varying lengths of time, it was found that more tunnel entrances, and xyleborine adults and offspring were recovered from trees that were flooded for 1–16 days and 7–22 days than from trees that were flooded for 14–29 days and 28–43 days. These results indicate that acute and severe drought stress does not predispose C. florida to infestation, but flood stress and the duration of flooding influence ambrosia beetle host selection and colonization. Understanding the role of host quality on ambrosia beetle preference behavior will assist with predicting the risk of infestation of these opportunistic insects in horticultural tree crops.","PeriodicalId":106657,"journal":{"name":"Frontiers in Insect Science","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121095907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SAFARIS: a spatial analytic framework for pest forecast systems","authors":"Y. Takeuchi, A. Tripodi, K. Montgomery","doi":"10.3389/finsc.2023.1198355","DOIUrl":"https://doi.org/10.3389/finsc.2023.1198355","url":null,"abstract":"Non-native pests and diseases pose a risk of economic and environmental damage to managed and natural U.S. forests and agriculture. The U.S. Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS) Plant Protection and Quarantine (PPQ) protects the health of U.S. agriculture and natural resources against invasive pests and diseases through efforts to prevent the entry, establishment, and spread of non-native pests and diseases. Because each pest or disease has its own idiosyncratic characteristics, analyzing risk is highly complex. To help PPQ better respond to pest and disease threats, we developed the Spatial Analytic Framework for Advanced Risk Information Systems (SAFARIS), an integrated system designed to provide a seamless environment for producing predictive models. SAFARIS integrates pest biology information, climate and non-climate data drivers, and predictive models to provide users with readily accessible and easily customizable tools to analyze pest and disease risks. The phenology prediction models, spread forecasting models, and other climate-based analytical tools in SAFARIS help users understand which areas are suitable for establishment, when surveys would be most fruitful, and aid in other analyses that inform decision-making, operational efforts, and rapid response. Here we introduce the components of SAFARIS and provide two use cases demonstrating how pest-specific models developed with SAFARIS tools support PPQ in its mission. Although SAFARIS is designed to address the needs of PPQ, the flexible, web-based framework is publicly available, allowing any user to leverage the available data and tools to model pest and disease risks.","PeriodicalId":106657,"journal":{"name":"Frontiers in Insect Science","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121314346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Mattila, L. Nguyen, A. Perrard, Maggie Bain, G. Otis
{"title":"Biology of the southern giant hornet, Vespa soror: nest architecture, morphological differences among castes, and the genetic structure of colonies","authors":"H. Mattila, L. Nguyen, A. Perrard, Maggie Bain, G. Otis","doi":"10.3389/finsc.2023.1136297","DOIUrl":"https://doi.org/10.3389/finsc.2023.1136297","url":null,"abstract":"Giant hornets in the genus Vespa are apex predators that are known throughout Asia for their exceptional size and devastating group attacks on social insect colonies. The giant hornets include Vespa mandarinia, a well-studied and widespread temperate species, and Vespa soror, a poorly known sister species that is limited to subtropical and tropical regions of Southeast Asia. Both species have been recently documented on the west coast of North America, raising urgent questions about their potential impact in novel ecosystems. To better understand the biology of V. soror, we describe the nest architecture, caste morphology, and genetic structure of colonies collected in Vietnam. Comparisons of colony metrics between the two giant hornet species suggest important differences that are likely a consequence of the relatively warmer climate in which V. soror occurs. Like V. mandarinia, V. soror constructs large, underground nests of partially enveloped horizontal combs. However, compared to temperate V. mandarinia colonies, the longer nesting period of subtropical V. soror colonies likely resulted in relatively larger colony sizes and nests by the end of their annual cycle. Vespa soror workers and gynes were larger than males, distinguishable based on wing shape and body size (total length and measures of six body parts), and equivalent in size to female castes of V. mandarinia. We genotyped colony members from three mature nests, which revealed that males and females were offspring of singly mated queens. Two colonies were monogynous, but one colony was comprised of two unrelated matrilines. Polygyny has not been observed for V. mandarinia, but is more common in tropical hornet species. Our study sheds light on essential details about the biology of an understudied species of giant hornet, whose populous colonies and long nesting period suggest the potential for substantial ecological impact wherever they occur.","PeriodicalId":106657,"journal":{"name":"Frontiers in Insect Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131157462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}