Comput. Geosci.Pub Date : 2019-09-01DOI: 10.1016/J.CAGEO.2018.12.004
T. Corpetti, X. Gong, Mengzhen Kang, Bao-Gang Hu, L. Hubert‐Moy
{"title":"Time-consistent estimation of LAI by assimilation in GreenLab plant growth model","authors":"T. Corpetti, X. Gong, Mengzhen Kang, Bao-Gang Hu, L. Hubert‐Moy","doi":"10.1016/J.CAGEO.2018.12.004","DOIUrl":"https://doi.org/10.1016/J.CAGEO.2018.12.004","url":null,"abstract":"","PeriodicalId":10649,"journal":{"name":"Comput. Geosci.","volume":"65 1","pages":"57-68"},"PeriodicalIF":0.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83110730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Comput. Geosci.Pub Date : 2019-09-01DOI: 10.1016/J.CAGEO.2019.05.006
W. Anderson, J. Lorenzo‐Trueba, V. Voller
{"title":"A geomorphic enthalpy method: Description and application to the evolution of fluvial-deltas under sea-level cycles","authors":"W. Anderson, J. Lorenzo‐Trueba, V. Voller","doi":"10.1016/J.CAGEO.2019.05.006","DOIUrl":"https://doi.org/10.1016/J.CAGEO.2019.05.006","url":null,"abstract":"","PeriodicalId":10649,"journal":{"name":"Comput. Geosci.","volume":"21 1","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74061742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Comput. Geosci.Pub Date : 2019-08-06DOI: 10.31223/osf.io/9sz6m
Z. Yunjun, H. Fattahi, F. Amelung
{"title":"Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction","authors":"Z. Yunjun, H. Fattahi, F. Amelung","doi":"10.31223/osf.io/9sz6m","DOIUrl":"https://doi.org/10.31223/osf.io/9sz6m","url":null,"abstract":"Abstract We present a review of small baseline interferometric synthetic aperture radar (InSAR) time series analysis with a new processing workflow and software implemented in Python, named MintPy ( https://github.com/insarlab/MintPy ). The time series analysis is formulated as a weighted least squares inversion. The inversion is unbiased for a fully connected network of interferograms without multiple subsets, such as provided by modern SAR satellites with small orbital tube and short revisit time. In the routine workflow, we first invert the interferogram stack for the raw phase time-series, then correct for the deterministic phase components: the tropospheric delay (using global atmospheric models or the delay-elevation ratio), the topographic residual and/or phase ramp, to obtain the noise-reduced displacement time-series. Next, we estimate the average velocity excluding noisy SAR acquisitions, which are identified using an outlier detection method based on the root mean square of the residual phase. The routine workflow includes three new methods to correct or exclude phase-unwrapping errors for two-dimensional algorithms: (i) the bridging method connecting reliable regions with minimum spanning tree bridges (particularly suitable for islands), (ii) the phase closure method exploiting the conservativeness of the integer ambiguity of interferogram triplets (well suited for highly redundant networks), and (iii) coherence-based network modification to identify and exclude interferograms with remaining coherent phase-unwrapping errors. We apply the routine workflow to the Galapagos volcanoes using Sentinel-1 and ALOS-1 data, assess the qualities of the essential steps in the workflow and compare the results with independent GPS measurements. We discuss the advantages and limitations of temporal coherence as a reliability measure, evaluate the impact of network redundancy on the precision and reliability of the InSAR measurements and its practical implication for interferometric pairs selection. A comparison with another open-source time series analysis software demonstrates the superior performance of the approach implemented in MintPy in challenging scenarios.","PeriodicalId":10649,"journal":{"name":"Comput. Geosci.","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81273428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Comput. Geosci.Pub Date : 2019-08-01DOI: 10.1016/J.CAGEO.2019.05.004
D. Pérez-Zárate, E. Santoyo, A. Acevedo-Anicasio, L. Díaz-González, C. García-López
{"title":"Evaluation of artificial neural networks for the prediction of deep reservoir temperatures using the gas-phase composition of geothermal fluids","authors":"D. Pérez-Zárate, E. Santoyo, A. Acevedo-Anicasio, L. Díaz-González, C. García-López","doi":"10.1016/J.CAGEO.2019.05.004","DOIUrl":"https://doi.org/10.1016/J.CAGEO.2019.05.004","url":null,"abstract":"","PeriodicalId":10649,"journal":{"name":"Comput. Geosci.","volume":"73 1","pages":"49-68"},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86362818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Comput. Geosci.Pub Date : 2019-08-01DOI: 10.1016/J.CAGEO.2019.04.010
Yanghai Yu, T. Balz, Heng Luo, M. Liao, Lu Zhang
{"title":"GPU accelerated interferometric SAR processing for Sentinel-1 TOPS data","authors":"Yanghai Yu, T. Balz, Heng Luo, M. Liao, Lu Zhang","doi":"10.1016/J.CAGEO.2019.04.010","DOIUrl":"https://doi.org/10.1016/J.CAGEO.2019.04.010","url":null,"abstract":"","PeriodicalId":10649,"journal":{"name":"Comput. Geosci.","volume":"45 1","pages":"12-25"},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80230542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Comput. Geosci.Pub Date : 2019-08-01DOI: 10.1016/J.CAGEO.2019.05.005
Arman Mohammadi Gonbadi, S. H. Tabatabaei, N. Fathianpour
{"title":"A new multiple-point grade estimation method by implicit volterra series","authors":"Arman Mohammadi Gonbadi, S. H. Tabatabaei, N. Fathianpour","doi":"10.1016/J.CAGEO.2019.05.005","DOIUrl":"https://doi.org/10.1016/J.CAGEO.2019.05.005","url":null,"abstract":"","PeriodicalId":10649,"journal":{"name":"Comput. Geosci.","volume":"17 1","pages":"69-81"},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81910417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Comput. Geosci.Pub Date : 2019-08-01DOI: 10.1016/J.CAGEO.2019.04.011
M. Kulawiak, A. Dawidowicz, Marek Emanuel Pacholczyk
{"title":"Analysis of server-side and client-side Web-GIS data processing methods on the example of JTS and JSTS using open data from OSM and geoportal","authors":"M. Kulawiak, A. Dawidowicz, Marek Emanuel Pacholczyk","doi":"10.1016/J.CAGEO.2019.04.011","DOIUrl":"https://doi.org/10.1016/J.CAGEO.2019.04.011","url":null,"abstract":"","PeriodicalId":10649,"journal":{"name":"Comput. Geosci.","volume":"16 1","pages":"26-37"},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78463800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Comput. Geosci.Pub Date : 2019-07-02DOI: 10.1016/J.CAGEO.2019.06.007
L. Räss, D. Kolyukhin, A. Minakov
{"title":"Efficient parallel random field generator for large 3-D geophysical problems","authors":"L. Räss, D. Kolyukhin, A. Minakov","doi":"10.1016/J.CAGEO.2019.06.007","DOIUrl":"https://doi.org/10.1016/J.CAGEO.2019.06.007","url":null,"abstract":"","PeriodicalId":10649,"journal":{"name":"Comput. Geosci.","volume":"35 1","pages":"158-169"},"PeriodicalIF":0.0,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85419650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Comput. Geosci.Pub Date : 2019-06-19DOI: 10.1016/J.CAGEO.2019.06.011
C. Gozzi, P. Filzmoser, A. Buccianti, O. Vaselli, B. Nisi
{"title":"Statistical methods for the geochemical characterisation of surface waters: The case study of the Tiber River basin (Central Italy)","authors":"C. Gozzi, P. Filzmoser, A. Buccianti, O. Vaselli, B. Nisi","doi":"10.1016/J.CAGEO.2019.06.011","DOIUrl":"https://doi.org/10.1016/J.CAGEO.2019.06.011","url":null,"abstract":"","PeriodicalId":10649,"journal":{"name":"Comput. Geosci.","volume":"92 1","pages":"80-88"},"PeriodicalIF":0.0,"publicationDate":"2019-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79948279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Comput. Geosci.Pub Date : 2019-05-01DOI: 10.1016/J.CAGEO.2019.01.014
D. Erdal, G. Baroni, E. Sánchez-León, O. Cirpka
{"title":"The value of simplified models for spin up of complex models with an application to subsurface hydrology","authors":"D. Erdal, G. Baroni, E. Sánchez-León, O. Cirpka","doi":"10.1016/J.CAGEO.2019.01.014","DOIUrl":"https://doi.org/10.1016/J.CAGEO.2019.01.014","url":null,"abstract":"","PeriodicalId":10649,"journal":{"name":"Comput. Geosci.","volume":"96 1","pages":"62-72"},"PeriodicalIF":0.0,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75447139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}