{"title":"Smart monitoring solution for dengue infection control: A digital twin-inspired approach","authors":"","doi":"10.1016/j.cmpb.2024.108459","DOIUrl":"10.1016/j.cmpb.2024.108459","url":null,"abstract":"<div><h3>Background and Objective:</h3><div>In the realm of smart healthcare, precise monitoring and prediction services are crucial for mitigating the impact of infectious diseases. This study introduces an innovative digital twin technology-inspired monitoring architecture that employs a similarity-based hybrid modeling scheme to significantly enhance accuracy in the smart healthcare domain. The research also delves into the potential of IoT technology in delivering advanced technological healthcare solutions, with a specific focus on the rapid expansion of dengue fever.</div></div><div><h3>Methods:</h3><div>The proposed digital twin-inspired healthcare system is designed to proactively combat the spread of dengue virus by enabling ubiquitous monitoring and forecasting of individuals’ susceptibility to dengue infection. The system utilizes digital twin technology to observe the status of healthcare and generate likely predictions about the vulnerability to the virus by employing k-means Clustering and Artificial Neural Networks.</div></div><div><h3>Results:</h3><div>The proposed system has been validated and its effectiveness has been demonstrated through experimental evaluation using carefully defined methods. The results of the experimental assessment confirm that the system performs optimally in terms of Temporal Delay (14.15 s), Classification Accuracy (92.86%), Sensitivity (92.43%), Specificity (91.52%), F-measure (90.86%), and Prediction Effectiveness. Moreover, by integrating a hybrid model that corrects errors in physics-based predictions employing a model for error correction driven by data, this approach has demonstrated a noteworthy 48% reduction in prediction errors, particularly in health monitoring scenarios.</div></div><div><h3>Conclusions:</h3><div>The digital twin-inspired healthcare system proposed in this study can assist healthcare providers in assessing the health vulnerability of the dengue virus, thereby reducing the likelihood of long-term or catastrophic health consequences. The integration of a hybrid modeling approach and the utilization of IoT technology has shown promising results in enhancing the accuracy and effectiveness of smart health monitoring and prediction services.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"2D/3D registration based on biplanar X-ray and CT images for surgical navigation","authors":"","doi":"10.1016/j.cmpb.2024.108444","DOIUrl":"10.1016/j.cmpb.2024.108444","url":null,"abstract":"<div><h3>Background and Objectives:</h3><div>Image-based 2D/3D registration is a crucial technology for fluoroscopy-guided surgical interventions. However, traditional registration methods relying on a single X-ray image into surgical navigation systems. This study proposes a novel 2D/3D registration approach utilizing biplanar X-ray images combined with computed tomography (CT) to significantly reduce registration and navigation errors. The method is successfully implemented in a surgical navigation system, enhancing its precision and reliability.</div></div><div><h3>Methods:</h3><div>First, we simultaneously register the frontal and lateral X-ray images with the CT image, enabling mutual complementation and more precise localization. Additionally, we introduce a novel similarity measure for image comparison, providing a more robust cost function for the optimization algorithm. Furthermore, a multi-resolution strategy is employed to enhance registration efficiency. Lastly, we propose a more accurate coordinate transformation method, based on projection and 3D reconstruction, to improve the precision of surgical navigation systems.<em>Results:</em> We conducted registration and navigation experiments using pelvic, spinal, and femur phantoms. The navigation results demonstrated that the feature registration errors (FREs) in the three experiments were 0.505±0.063 mm, 0.515±0.055 mm, and 0.577±0.056 mm, respectively. Compared to the point-to-point (PTP) registration method based on anatomical landmarks, our method reduced registration errors by 31.3%, 23.9%, and 26.3%, respectively.</div></div><div><h3>Conclusion:</h3><div>The results demonstrate that our method significantly reduces registration and navigation errors, highlighting its potential for application across various anatomical sites. Our code is available at: <span><span>https://github.com/SJTUdemon/2D-3D-Registration</span><svg><path></path></svg></span></div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bootstrap each lead’s latent: A novel method for self-supervised learning of multilead electrocardiograms","authors":"","doi":"10.1016/j.cmpb.2024.108452","DOIUrl":"10.1016/j.cmpb.2024.108452","url":null,"abstract":"<div><h3>Background and Objective:</h3><div>Electrocardiogram (ECG) is one of the most important diagnostic tools for cardiovascular diseases (CVDs). Recent studies show that deep learning models can be trained using labeled ECGs to achieve automatic detection of CVDs, assisting cardiologists in diagnosis. However, the deep learning models heavily rely on labels in training, while manual labeling is costly and time-consuming. This paper proposes a new self-supervised learning (SSL) method for multilead ECGs: bootstrap each lead’s latent (BELL) to reduce the reliance and boost model performance in various tasks, especially when training data are insufficient.</div></div><div><h3>Method:</h3><div>BELL is a variant of the well-known bootstrap your own latent (BYOL). The BELL aims to learn prior knowledge from unlabeled ECGs by pretraining, benefitting downstream tasks. It leverages the characteristics of multilead ECGs. First, BELL uses the multiple-branch skeleton, which is more effective in processing multilead ECGs. Moreover, it proposes intra-lead and inter-lead mean square error (MSE) to guide pretraining, and their fusion can result in better performances. Additionally, BELL inherits the main advantage of the BYOL: No negative pair is used in pretraining, making it more efficient.</div></div><div><h3>Results:</h3><div>In most cases, BELL surpasses previous works in the experiments. More importantly, the pretraining improves model performances by 0.69% <span><math><mo>∼</mo></math></span> 8.89% in downstream tasks when only 10% of training data are available. Furthermore, BELL shows excellent adaptability to uncurated ECG data from a real-world hospital. Only slight performance degradation occurs (<span><math><mo><</mo></math></span>1% in most cases) when using these data.</div></div><div><h3>Conclusion:</h3><div>The results suggest that the BELL can alleviate the reliance on manual ECG labels from cardiologists, a critical bottleneck of the current deep learning-based models. In this way, the BELL can also help deep learning extend its application on automatic ECG analysis, reducing the cardiologists’ burden in real-world diagnosis.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MG-Net: A fetal brain tissue segmentation method based on multiscale feature fusion and graph convolution attention mechanisms","authors":"","doi":"10.1016/j.cmpb.2024.108451","DOIUrl":"10.1016/j.cmpb.2024.108451","url":null,"abstract":"<div><h3>Background and Objective:</h3><div>Fetal brain tissue segmentation provides foundational support for comprehensively understanding the neurodevelopment of normal and congenital disease-affected fetuses. Manual labeling is very time-consuming, and automated segmentation methods can greatly improve the efficiency of doctors. At the same time, fetal brain tissue undergoes various changes throughout the pregnancy, leading to a continuous change in tissue contrast, which greatly increases the difficulty of training segmentation methods. This study aims to develop an automated segmentation model that can efficiently and accurately segment fetal brain tissue, improving the workflow for medical professionals.</div></div><div><h3>Methods:</h3><div>We propose a novel deep learning-based segmentation model that incorporates three innovative components: Firstly, a new Dual Dilated Attention Block (DDAB) is proposed in the encoder part to enhance the feature extraction of local spatial and structural contextual information. Secondly, a Multi-scale Deformable Transformer (MSDT) is integrated into the bottleneck to improve the feature extraction of global information on local spatial and structural contextual information. Thirdly, we use a novel block based on Graph Convolution Attention (GCAB) in the decoder, which effectively enhances the features at the decoder.The code is available at <span><span>https://github.com/unicoco7/MG-Net/</span><svg><path></path></svg></span>.</div></div><div><h3>Results:</h3><div>We trained and tested on the FeTA 2021 and FeTA 2022 datasets, and evaluated using seven popular metrics, including Dice, IoU, MAE, BoundaryF, PRE, SEN, and SPE. Compared to the current state-of-the-art 3D segmentation models such as nnFormer, SwinUNETR, and 3DUX-net, our proposed method has surpassed all of them in metrics like Dice, IoU, and MAE. Specifically, on the FeTA 2021 dataset, our model achieved a Dice of 0.8666, an IoU of 0.7646, and an MAE of 0.0027; on the FeTA 2022 dataset, it achieved a Dice of 0.8552, an IoU of 0.7470, and an MAE of 0.0005.</div></div><div><h3>Conclusion:</h3><div>In this paper, we propose a model for three-dimensional fetal brain tissue segmentation based on multi-scale feature fusion and graph convolution attention mechanism, and conduct experimental evaluation on the FeTA 2021 and FeTA 2022 datasets. Understanding the boundaries of fetal brain tissue is crucial for doctors’ diagnosis, so the proposed model is expected to improve the speed and accuracy of doctors’ diagnoses.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ECG classification based on guided attention mechanism","authors":"","doi":"10.1016/j.cmpb.2024.108454","DOIUrl":"10.1016/j.cmpb.2024.108454","url":null,"abstract":"<div><h3>Background and Objective</h3><div>Integrating domain knowledge into deep learning models can improve their effectiveness and increase explainability. This study aims to enhance the classification performance of electrocardiograms (ECGs) by customizing specific guided mechanisms based on the characteristics of different cardiac abnormalities.</div></div><div><h3>Methods</h3><div>Two novel guided attention mechanisms, Guided Spatial Attention (GSA) and CAM-based spatial guided attention mechanism (CGAM), were introduced. Different attention guidance labels were created based on clinical knowledge for four ECG abnormality classification tasks: ST change detection, premature contraction identification, Wolf-Parkinson-White syndrome (WPW) classification, and atrial fibrillation (AF) detection. The models were trained and evaluated separately for each classification task. Model explainability was quantified using Shapley values.</div></div><div><h3>Results</h3><div>GSA improved the F1 score of the model by 5.74%, 5%, 8.96%, and 3.91% for ST change detection, premature contraction identification, WPW classification, and AF detection, respectively. Similarly, CGAM exhibited improvements of 3.89%, 5.40%, 8.21%, and 1.80% for the respective tasks. The combined use of GSA and CGAM resulted in even higher improvements of 6.26%, 5.58%, 8.85%, and 4.03%, respectively. Moreover, when all four tasks were conducted simultaneously, a notable overall performance boost was achieved, demonstrating the broad adaptability of the proposed model. The quantified Shapley values demonstrated the effectiveness of the guided attention mechanisms in enhancing the model's explainability.</div></div><div><h3>Conclusions</h3><div>The guided attention mechanisms, utilizing domain knowledge, effectively directed the model's attention, leading to improved classification performance and explainability. These findings have significant implications in facilitating accurate automated ECG classification.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Brain color-coded diffusion imaging: Utility of ACPC reorientation of gradients in healthy subjects and patients","authors":"","doi":"10.1016/j.cmpb.2024.108449","DOIUrl":"10.1016/j.cmpb.2024.108449","url":null,"abstract":"<div><h3>Background and Objective</h3><div>The common structural interpretation of diffusion color-encoded (DCE) maps assumes that the brain is aligned with the gradients of the MRI machine. This is seldom achieved in the field, leading to incorrect red (R), green (G) and blue (B) DCE values for the expected orientation of fiber bundles. We studied the virtual reorientation of gradients according to the anterior commissure – posterior commissure (ACPC) system on the RGB derivatives.</div></div><div><h3>Methods</h3><div>We measured mean ± standard deviation of average, standard deviation, skewness and kurtosis of RGB derivatives, before (rO) and after (acpcO) gradient reorientation, in one healthy-subject group with head routinely positioned (HS-routine), and in two patient groups, one with essential tremor (ET-Opti), and one with Parkinson's disease (PD-Opti), with head position optimized according to ACPC before acquisition. We studied the pitch, roll and yaw angles of reorientation, and we compared rO and acpcO conditions, and groups (ad hoc statistics).</div></div><div><h3>Results</h3><div>Pitch (maximum in the HS-routine group) was greater than roll and yaw. After reorientation of gradients, in the HS-routine group, DCE average increased, and Stddev, skewness and kurtosis decreased; R, G and B average increased, and R and B skewness and kurtosis decreased. By contrast, in the ET-Opti group and the PD-Opti group, R, G and B, average and Stddev increased, and skewness and kurtosis decreased. In both rO and acpcO conditions, in the ET-Opti and PD-Opti groups, average and standard deviation were higher, while skewness and kurtosis were lower.</div></div><div><h3>Conclusions</h3><div>DCE map interpretability depends on brain orientation. Reorientation realigns gradients with the anatomic and physiologic position of the head and brain, as exemplified.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Concept-based AI interpretability in physiological time-series data: Example of abnormality detection in electroencephalography","authors":"","doi":"10.1016/j.cmpb.2024.108448","DOIUrl":"10.1016/j.cmpb.2024.108448","url":null,"abstract":"<div><h3>Background and Objective</h3><div>Despite recent performance advancements, deep learning models are not yet adopted in clinical practice on a wide scale. The intrinsic intransparency of such systems is commonly cited as one major reason for this reluctance. This has motivated methods that aim to provide explanations of model functioning. Known limitations of feature-based explanations have led to an increased interest in concept-based interpretability. <em>Testing with Concept Activation Vectors</em> (TCAV) employs human-understandable, abstract concepts to explain model behavior. The method has previously been applied to the medical domain in the context of electronic health records, retinal fundus images and magnetic resonance imaging.</div></div><div><h3>Methods</h3><div>We explore the usage of TCAV for building interpretable models on physiological time series, using an example of abnormality detection in electroencephalography (EEG). For this purpose, we adopt the XceptionTime model, which is suitable for multi-channel physiological data of variable sizes. The model provides state-of-the-art performance on raw EEG data and is publically available. We propose and test several ideas regarding concept definition through metadata mining, using additional labeled EEG data and extracting interpretable signal characteristics in the form of frequencies. By including our own hospital data with analog labeling, we further evaluate the robustness of our approach.</div></div><div><h3>Results</h3><div>The tested concepts show a TCAV score distribution that is in line with the clinical expectations, i.e. concepts known to have strong links with EEG pathologies (such as epileptiform discharges) received higher scores than the neutral concepts (e.g. sex). The scores were consistent across the applied concept generation strategies.</div></div><div><h3>Conclusions</h3><div>TCAV has the potential to improve interpretability of deep learning applied to multi-channel signals as well as to detect possible biases in the data. Still, further work on developing the strategies for concept definition and validation on clinical physiological time series is needed to better understand how to extract clinically relevant information from the concept sensitivity scores.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142420949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In silico data-based comparison of the accuracy and error source of various methods for noninvasively estimating central aortic blood pressure","authors":"","doi":"10.1016/j.cmpb.2024.108450","DOIUrl":"10.1016/j.cmpb.2024.108450","url":null,"abstract":"<div><h3>Background and objectives</h3><div>The higher clinical significance of central aortic blood pressure (CABP) compared to peripheral blood pressures has been extensively demonstrated. Accordingly, many methods for noninvasively estimating CABP have been proposed. However, there still lacks a systematic comparison of existing methods, especially in terms of how they differ in the ability to tolerate individual differences or measurement errors. The present study was designed to address this gap.</div></div><div><h3>Methods</h3><div>A large-scale ‘virtual subject’ dataset (n = 600) was created using a computational model of the cardiovascular system, and applied to examine several classical CABP estimation methods, including the direct method, generalized transfer function (GTF) method, n-point moving average (NPMA) method, second systolic pressure of periphery (SBP2) method, physical model-based wave analysis (MBWA) method, and suprasystolic cuff-based waveform reconstruction (SCWR) method. The errors of CABP estimation were analyzed and compared among methods with respect to the magnitude/distribution, correlations with physiological/hemodynamic factors, and sensitivities to noninvasive measurement errors.</div></div><div><h3>Results</h3><div>The errors of CABP estimation exhibited evident inter-method differences in terms of the mean and standard deviation (SD). Relatively, the estimation errors of the methods adopting pre-trained algorithms (i.e., the GTF and SCWR methods) were overall smaller and less sensitive to variations in physiological/hemodynamic conditions and random errors in noninvasive measurement of brachial arterial blood pressure (used for calibrating peripheral pulse wave). The performances of all the methods worsened following the introduction of random errors to peripheral pulse wave (used for deriving CABP), as characterized by the enlarged SD and/or increased mean of the estimation errors. Notably, the GTF and SCWR methods did not exhibit a better capability of tolerating pulse wave errors in comparison with other methods.</div></div><div><h3>Conclusions</h3><div>Classical noninvasive methods for estimating CABP were found to differ considerably in both the accuracy and error source, which provided theoretical evidence for understanding the specific advantages and disadvantages of each method. Knowledge about the method-specific error source and sensitivities of errors to different physiological/hemodynamic factors may contribute as theoretical references for interpreting clinical observations and exploring factors underlying large estimation errors, or provide guidance for optimizing existing methods or developing new methods.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The impact of different degrees of stenosis on platelet deposition in the left anterior descending branch of the coronary artery","authors":"","doi":"10.1016/j.cmpb.2024.108445","DOIUrl":"10.1016/j.cmpb.2024.108445","url":null,"abstract":"<div><h3>Background and objective</h3><div>This study aimed to investigate the impact of different stenotic degrees on platelet deposition in the left anterior descending branch of the coronary artery.</div></div><div><h3>Methods</h3><div>The idealized model of coronary artery stenosis of 30 %, 40 %, 50 %, 60 %, 70 % and four patient-specific models of 22.17 %, 34.88 %, 51.23 % and 62.96 % were established. A discrete phase model was used to calculate the deposition of platelet particles in blood.</div></div><div><h3>Results</h3><div>(1) As the stenotic degree increased from 30 % to 70 %, the maximum deposition rates were 4.23e<sup>-</sup><sup>2</sup> kg/(m<sup>2</sup> ·s), 3.47e<sup>-</sup><sup>2</sup> kg/(m<sup>2</sup> ·s), 0.14 kg/(m<sup>2</sup> ·s), 0.15 kg/(m<sup>2</sup> ·s), and 0.38 kg/(m<sup>2</sup> ·s), respectively. (2) The greater the stenotic degree, the more points of platelet deposition. (3) Platelets were mainly deposited at the proximal segment of mild stenosis. When the stenotic degree exceeded 50 %, the deposition position moved to the distal segment of the stenosis. (4) The results in the real coronary artery models were similar to those in the idealized model.</div></div><div><h3>Conclusion</h3><div>The study suggests that the location and number of platelet deposition are related to the degree of stenosis. Moderate to severe stenosis is more likely to spread downstream.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Machine learning for post-liver transplant survival: Bridging the gap for long-term outcomes through temporal variation features","authors":"","doi":"10.1016/j.cmpb.2024.108442","DOIUrl":"10.1016/j.cmpb.2024.108442","url":null,"abstract":"<div><h3>Background</h3><div>The long-term survival of liver transplant (LT) recipients is essential for optimizing organ allocation and estimating mortality outcomes. While models like the Model-for-End-Stage-Liver-Disease (MELD) predict 90-day mortality on the waiting list, they do not predict post-LT survival accurately. There is a need for predictive models that can forecast post-LT survival beyond the immediate period after transplantation.</div></div><div><h3>Method</h3><div>This study introduces new temporal variation features for predicting post-LT survival during the waiting list period. Cox Proportional-Hazards regression (CoxPH), Random Survival Forest (RSF), and Extreme Gradient Boosting (XGB) models are utilized, along with patient demographics and waiting list duration. Data from 716 LT patients from the University of Minnesota CTSI (2011–2021) are used to develop, evaluate, and compare post-LT survival prediction models.</div></div><div><h3>Results</h3><div>The temporal variation features, particularly when combined with the RSF model, proved most effective in predicting post-LT survival, with a C-index of 0.71 and an IBS of 0.151. This outperformed the predictive capability of the most recent MELD score, which had a C-index of <0.51 in the same cohort.</div></div><div><h3>Conclusions</h3><div>Incorporating temporal variation features with the RSF model enhances long-term post-LT survival predictions. These insights can assist clinicians and patients in making more informed decisions about organ allocation and understanding the utility of LT, ultimately leading to improved patient outcomes.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}