Computer methods and programs in biomedicine最新文献

筛选
英文 中文
Physiological model-based machine learning for classifying patients with binge-eating disorder (BED) from the Oral Glucose Tolerance Test (OGTT) curve 基于生理学模型的机器学习,从口服葡萄糖耐量试验(OGTT)曲线对暴饮暴食症(BED)患者进行分类。
IF 4.9 2区 医学
Computer methods and programs in biomedicine Pub Date : 2024-10-31 DOI: 10.1016/j.cmpb.2024.108477
Anna Procopio , Marianna Rania , Paolo Zaffino , Nicola Cortese , Federica Giofrè , Franco Arturi , Cristina Segura-Garcia , Carlo Cosentino
{"title":"Physiological model-based machine learning for classifying patients with binge-eating disorder (BED) from the Oral Glucose Tolerance Test (OGTT) curve","authors":"Anna Procopio ,&nbsp;Marianna Rania ,&nbsp;Paolo Zaffino ,&nbsp;Nicola Cortese ,&nbsp;Federica Giofrè ,&nbsp;Franco Arturi ,&nbsp;Cristina Segura-Garcia ,&nbsp;Carlo Cosentino","doi":"10.1016/j.cmpb.2024.108477","DOIUrl":"10.1016/j.cmpb.2024.108477","url":null,"abstract":"<div><h3>Background and objective:</h3><div>Binge eating disorder (BED) is the most frequent eating disorder, often confused with obesity, with which it shares several characteristics. Early identification could enable targeted therapeutic interventions. In this study, we propose a hybrid pipeline that, starting from plasma glucose data acquired during the Oral Glucose Tolerance Test (OGTT), allows us to classify the two types of patients through computational modeling and artificial intelligence.</div></div><div><h3>Methods:</h3><div>The proposed hybrid pipeline integrates a classical mechanistic model of delayed differential equations (DDE) that describes glucose–insulin dynamics with machine learning (ML) methods. Ad hoc techniques, including structural identifiability analysis, have been employed for refining and evaluating the mathematical model. Additionally, a dedicated pipeline for identifying and optimizing model parameters has been applied to obtain reliable estimates. Robust feature extraction and classifier selection processes were developed to ensure the optimal choice of the best-performing classifier.</div></div><div><h3>Results:</h3><div>By leveraging parameters estimated from the mechanistic model alongside easily obtainable patient information (such as glucose levels at 30 and 120 min post-OGTT, glycated hemoglobin (Hb1Ac), body mass index (BMI), and waist circumference), our approach facilitates accurate classification of patients, enabling tailored therapeutic interventions.</div></div><div><h3>Conclusion:</h3><div>Initial findings, focusing on correctly categorizing patients with BED based on metabolic data, demonstrate promising outcomes. These results suggest significant potential for refinement, including exploration of alternative mechanistic models and machine learning algorithms, to enhance classification accuracy and therapeutic strategies.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"258 ","pages":"Article 108477"},"PeriodicalIF":4.9,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of grinding parameters in robotic-assisted preparation of cracked teeth based on fracture mechanics: FEA and experiment 基于断裂力学的裂纹牙机器人辅助制备中的磨削参数优化:有限元分析与实验
IF 4.9 2区 医学
Computer methods and programs in biomedicine Pub Date : 2024-10-31 DOI: 10.1016/j.cmpb.2024.108485
Jianpeng Sun , Jingang Jiang , Biao Ma , Yongde Zhang , Jie Pan , Di Qiao
{"title":"Optimization of grinding parameters in robotic-assisted preparation of cracked teeth based on fracture mechanics: FEA and experiment","authors":"Jianpeng Sun ,&nbsp;Jingang Jiang ,&nbsp;Biao Ma ,&nbsp;Yongde Zhang ,&nbsp;Jie Pan ,&nbsp;Di Qiao","doi":"10.1016/j.cmpb.2024.108485","DOIUrl":"10.1016/j.cmpb.2024.108485","url":null,"abstract":"<div><h3>Background and Objectives</h3><div>If left untreated, cracked teeth can lead to tooth loss, of which the incidence is 70%. Dental preparation is an effective treatment, but it is difficult to meet the clinical requirements when traditionally prepared by dentists. Grinding-based tooth preparation robot (TPR) shows promise for clinical applications to assist dentists. However, current TPR has problems with chipping and crack extension when preparing real teeth.</div></div><div><h3>Methods</h3><div>We propose a grinding parameter optimization strategy to solve this problem, specifically including preparation depth and direction. Among them, surface morphology observation technology and thermal-mechanical coupling simulation technology are used. Through theoretical modeling, computer simulation techniques and surface morphology experimental studies, different motion parameters are compared and analyzed to derive the optimal preparation parameters.</div></div><div><h3>Results</h3><div>One of our contributions is to control the preparation depth based on the different material removal methods, and the brittle removal methods and grinding heat during the preparation process were reduced. Another contribution is to derive the stress intensity factor (SIF) at the crack tip for different preparation directions based on multi-grit and thermal-mechanical coupling finite element model for different preparation stages. The preparation direction was directed and crack extension was minimized. Finally, the experimental system of the TPR was constructed. Based on the proposed morphology and preparation direction optimization method, the material removal method during the preparation process can be controlled in plastic removal. Crack extension was also reduced based on different stages of optimized preparation directions. Based on the guided strategy, the TPR can provide safe assisted dentists.</div></div><div><h3>Conclusions</h3><div>In this work, the preparation parameters of the cracked preparation robot were optimized to enable it to perform the preparation of hard and brittle cracked teeth. The surface morphology met the clinical requirements. Intraoral preparation will be considered in the future to advance the robot toward clinical dental applications.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"258 ","pages":"Article 108485"},"PeriodicalIF":4.9,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DEDUCE: Multi-head attention decoupled contrastive learning to discover cancer subtypes based on multi-omics data DEDUCE:基于多组学数据的多头注意力解耦对比学习发现癌症亚型
IF 4.9 2区 医学
Computer methods and programs in biomedicine Pub Date : 2024-10-30 DOI: 10.1016/j.cmpb.2024.108478
Liangrui Pan , Xiang Wang , Qingchun Liang , Jiandong Shang , Wenjuan Liu , Liwen Xu , Shaoliang Peng
{"title":"DEDUCE: Multi-head attention decoupled contrastive learning to discover cancer subtypes based on multi-omics data","authors":"Liangrui Pan ,&nbsp;Xiang Wang ,&nbsp;Qingchun Liang ,&nbsp;Jiandong Shang ,&nbsp;Wenjuan Liu ,&nbsp;Liwen Xu ,&nbsp;Shaoliang Peng","doi":"10.1016/j.cmpb.2024.108478","DOIUrl":"10.1016/j.cmpb.2024.108478","url":null,"abstract":"<div><h3>Background and Objective:</h3><div>Given the high heterogeneity and clinical diversity of cancer, substantial variations exist in multi-omics data and clinical features across different cancer subtypes.</div></div><div><h3>Methods:</h3><div>We propose a model, named DEDUCE, based on a symmetric multi-head attention encoders (SMAE), for unsupervised contrastive learning to analyze multi-omics cancer data, with the aim of identifying and characterizing cancer subtypes. This model adopts a unsupervised SMAE that can deeply extract contextual features and long-range dependencies from multi-omics data, thereby mitigating the impact of noise. Importantly, DEDUCE introduces a subtype decoupled contrastive learning method based on a multi-head attention mechanism to simultaneously learn features from multi-omics data and perform clustering for identifying cancer subtypes. Subtypes are clustered by calculating the similarity between samples in both the feature space and sample space of multi-omics data. The fundamental concept involves decoupling various attributes of multi-omics data features and learning them as contrasting terms. A contrastive loss function is constructed to quantify the disparity between positive and negative examples, and the model minimizes this difference, thereby promoting the acquisition of enhanced feature representation.</div></div><div><h3>Results:</h3><div>The DEDUCE model undergoes extensive experiments on simulated multi-omics datasets, single-cell multi-omics datasets, and cancer multi-omics datasets, outperforming 10 deep learning models. The DEDUCE model outperforms state-of-the-art methods, and ablation experiments demonstrate the effectiveness of each module in the DEDUCE model. Finally, we applied the DEDUCE model to identify six cancer subtypes of AML.</div></div><div><h3>Conclusion:</h3><div>In this paper, we proposed DEDUCE model learns features from multi-omics data through SMAE, and the subtype decoupled contrastive learning consistently optimizes the model for clustering and identifying cancer subtypes. The DEDUCE model demonstrates a significant capability in discovering new cancer subtypes. We applied the DEDUCE model to identify six subtypes of AML. Through the analysis of GO function enrichment, subtype-specific biological functions, and GSEA of AML using the DEDUCE model, the interpretability of the DEDUCE model in identifying cancer subtypes is further enhanced.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"257 ","pages":"Article 108478"},"PeriodicalIF":4.9,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of Zero Pressure Geometry and prestress methods in cardiovascular Fluid-Structure Interaction 心血管流体-结构相互作用中零压几何和预应力方法的比较分析。
IF 4.9 2区 医学
Computer methods and programs in biomedicine Pub Date : 2024-10-29 DOI: 10.1016/j.cmpb.2024.108475
André Mourato , Rodrigo Valente , José Xavier , Moisés Brito , Stéphane Avril , António C. Tomás , José Fragata
{"title":"Comparative analysis of Zero Pressure Geometry and prestress methods in cardiovascular Fluid-Structure Interaction","authors":"André Mourato ,&nbsp;Rodrigo Valente ,&nbsp;José Xavier ,&nbsp;Moisés Brito ,&nbsp;Stéphane Avril ,&nbsp;António C. Tomás ,&nbsp;José Fragata","doi":"10.1016/j.cmpb.2024.108475","DOIUrl":"10.1016/j.cmpb.2024.108475","url":null,"abstract":"<div><h3>Background and Objective:</h3><div>Modelling patient-specific aortic biomechanics with advanced computational techniques, such as Fluid–Structure Interaction (FSI), can be crucial to provide effective decision-making indices to enhance current clinical practices. To effectively simulate Ascending Thoracic Aortic Aneurysms (ATAA), the stress-free configuration must be defined. The Zero Pressure Geometry (ZPG) and the Prestress Tensor (PT) are two of the main approaches to tackle this issue. However, their impact on the numerical results is yet to be analysed. Computed Tomography Angiography (CTA) and Magnetic Resonance Imaging (MRI) data were used to develop patient-specific 2-way FSI frameworks.</div></div><div><h3>Methods:</h3><div>Three models were developed considering different tissue prestressing approaches to account for the reference configuration and their numerical results were compared. The selected approaches were: (i) ZPG, (ii) PT and (iii) a combination of the PT approach with a regional mapping of material properties (PTCAL).</div></div><div><h3>Results:</h3><div>The pressure fields estimated by all models were equivalent. The estimation of Wall Shear Stress (WSS) based metrics revealed good correspondence between all models except the Relative Residence Time (RRT). Regarding ATAA wall mechanics, the proposed extension to the PT approach presented a closer agreement with the ZPG model than its counterpart. Additionally, the PT and PTCAL approaches required around 60% fewer iterations to achieve cycle-to-cycle convergence than the ZPG algorithm.</div></div><div><h3>Conclusion:</h3><div>Using a regional mapping of material properties in combination with the PT method presented a better correspondence with the ZPG approach. The outcomes of this study can pave the way for advancing the accuracy and convergence of ATAA numerical models using the PT methodology.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"257 ","pages":"Article 108475"},"PeriodicalIF":4.9,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thrombogenic Risk Assessment of Transcatheter Prosthetic Heart Valves Using a Fluid-Structure Interaction Approach 采用流体-结构相互作用方法评估经导管人工心脏瓣膜的血栓形成风险。
IF 4.9 2区 医学
Computer methods and programs in biomedicine Pub Date : 2024-10-28 DOI: 10.1016/j.cmpb.2024.108469
Kyle Baylous , Brandon Kovarovic , Rodrigo R. Paz , Salwa Anam , Ryan Helbock , Marc Horner , Marvin Slepian , Danny Bluestein
{"title":"Thrombogenic Risk Assessment of Transcatheter Prosthetic Heart Valves Using a Fluid-Structure Interaction Approach","authors":"Kyle Baylous ,&nbsp;Brandon Kovarovic ,&nbsp;Rodrigo R. Paz ,&nbsp;Salwa Anam ,&nbsp;Ryan Helbock ,&nbsp;Marc Horner ,&nbsp;Marvin Slepian ,&nbsp;Danny Bluestein","doi":"10.1016/j.cmpb.2024.108469","DOIUrl":"10.1016/j.cmpb.2024.108469","url":null,"abstract":"<div><h3>Background and Objective</h3><div>Prosthetic heart valve interventions such as TAVR have surged over the past decade, but the associated complication of long-term, life-threatening thrombotic events continues to undermine patient outcomes. Thus, improving thrombogenic risk analysis of TAVR devices is crucial. In vitro studies for thrombogenicity are typically difficult to perform. However, revised ISO testing standards include computational testing for thrombogenic risk assessment of cardiovascular implants. We present a fluid-structure interaction (FSI) approach for assessing thrombogenic risk of transcatheter aortic valves.</div></div><div><h3>Methods</h3><div>An FSI framework was implemented via the incompressible computational fluid dynamics multi-physics solver of the ANSYS LS-DYNA software. The numerical modeling approach for flow analysis was validated by comparing the derived flow rate of the 29 mm CoreValve device from benchtop testing and orifice areas of commercial TAVR valves in the literature to in silico results. Thrombogenic risk was analyzed by computing stress accumulation (SA) on virtual platelets seeded in the flow fields via ANSYS EnSight. The integrated FSI-thrombogenicity methodology was subsequently employed to examine hemodynamics and thrombogenic risk of TAVR devices with two approaches: 1) engineering optimization and 2) clinical assessment.</div></div><div><h3>Results</h3><div>Simulated effective orifice areas for commercial valves were in reported ranges. In silico cardiac output and flow rate during the positive pressure differential period matched experimental results by approximately 93 %. The approach was used to analyze the effect of various TAVR leaflet designs on hemodynamics, where platelets experienced instantaneous stresses reaching around 10 Pa. Post-TAVR deployment hemodynamics in patient-specific bicuspid aortic valve anatomies revealed varying degrees of thrombogenic risk with the highest median SA around 70 dyn·s/cm<sup>2</sup> - nearly double the activation threshold - despite those being clinically classified as “mild” paravalvular leaks.</div></div><div><h3>Conclusions</h3><div>Our methodology can be used to improve the thromboresistance of prosthetic valves from the initial design stage to the clinic. It allows for unparalleled optimization of devices, uncovering key TAVR leaflet design parameters that can be used to mitigate thrombogenic risk, in addition to patient-specific modeling to evaluate device performance. This work demonstrates the utility of advanced in silico analysis of TAVR devices that can be utilized for thrombogenic risk assessment of other blood recirculating devices.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"257 ","pages":"Article 108469"},"PeriodicalIF":4.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The CrowdGleason dataset: Learning the Gleason grade from crowds and experts CrowdGleason 数据集:从人群和专家中学习格里森等级。
IF 4.9 2区 医学
Computer methods and programs in biomedicine Pub Date : 2024-10-28 DOI: 10.1016/j.cmpb.2024.108472
Miguel López-Pérez , Alba Morquecho , Arne Schmidt , Fernando Pérez-Bueno , Aurelio Martín-Castro , Javier Mateos , Rafael Molina
{"title":"The CrowdGleason dataset: Learning the Gleason grade from crowds and experts","authors":"Miguel López-Pérez ,&nbsp;Alba Morquecho ,&nbsp;Arne Schmidt ,&nbsp;Fernando Pérez-Bueno ,&nbsp;Aurelio Martín-Castro ,&nbsp;Javier Mateos ,&nbsp;Rafael Molina","doi":"10.1016/j.cmpb.2024.108472","DOIUrl":"10.1016/j.cmpb.2024.108472","url":null,"abstract":"&lt;div&gt;&lt;h3&gt;Background:&lt;/h3&gt;&lt;div&gt;Currently, prostate cancer (PCa) diagnosis relies on the human analysis of prostate biopsy Whole Slide Images (WSIs) using the Gleason score. Since this process is error-prone and time-consuming, recent advances in machine learning have promoted the use of automated systems to assist pathologists. Unfortunately, labeled datasets for training and validation are scarce due to the need for expert pathologists to provide ground-truth labels.&lt;/div&gt;&lt;/div&gt;&lt;div&gt;&lt;h3&gt;Methods:&lt;/h3&gt;&lt;div&gt;This work introduces a new prostate histopathological dataset named CrowdGleason, which consists of 19,077 patches from 1045 WSIs with various Gleason grades. The dataset was annotated using a crowdsourcing protocol involving seven pathologists-in-training to distribute the labeling effort. To provide a baseline analysis, two crowdsourcing methods based on Gaussian Processes (GPs) were evaluated for Gleason grade prediction: SVGPCR, which learns a model from the CrowdGleason dataset, and SVGPMIX, which combines data from the public dataset SICAPv2 and the CrowdGleason dataset. The performance of these methods was compared with other crowdsourcing and expert label-based methods through comprehensive experiments.&lt;/div&gt;&lt;/div&gt;&lt;div&gt;&lt;h3&gt;Results:&lt;/h3&gt;&lt;div&gt;The results demonstrate that our GP-based crowdsourcing approach outperforms other methods for aggregating crowdsourced labels (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;7048&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;0207&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;) for SVGPCR vs.(&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;6576&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;0086&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;) for SVGP with majority voting). SVGPCR trained with crowdsourced labels performs better than GP trained with expert labels from SICAPv2 (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;6583&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;0220&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;) and outperforms most individual pathologists-in-training (mean &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;5432&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;). Additionally, SVGPMIX trained with a combination of SICAPv2 and CrowdGleason achieves the highest performance on both datasets (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;7814&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;0083&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;7276&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;0260&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;).&lt;/div&gt;&lt;/div&gt;&lt;div&gt;&lt;h3&gt;Conclusion:&lt;/h3&gt;&lt;div&gt;The experiments show that the CrowdGleason dataset can be successfully used for training and validating supervised and crowdsourcing methods. Furthermore, the crowdsourcing methods trained on this dataset obtain competitive results against those using expert labels. Interestingly, the combination of expert and non-expert labels opens the door to a future of massive labeling by incorporating both expert and non-expert pathologist an","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"257 ","pages":"Article 108472"},"PeriodicalIF":4.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards high-performance deep learning architecture and hardware accelerator design for robust analysis in diffuse correlation spectroscopy 实现高性能深度学习架构和硬件加速器设计,用于漫射相关光谱学的稳健分析。
IF 4.9 2区 医学
Computer methods and programs in biomedicine Pub Date : 2024-10-28 DOI: 10.1016/j.cmpb.2024.108471
Zhenya Zang, Quan Wang, Mingliang Pan, Yuanzhe Zhang, Xi Chen, Xingda Li, David Day Uei Li
{"title":"Towards high-performance deep learning architecture and hardware accelerator design for robust analysis in diffuse correlation spectroscopy","authors":"Zhenya Zang,&nbsp;Quan Wang,&nbsp;Mingliang Pan,&nbsp;Yuanzhe Zhang,&nbsp;Xi Chen,&nbsp;Xingda Li,&nbsp;David Day Uei Li","doi":"10.1016/j.cmpb.2024.108471","DOIUrl":"10.1016/j.cmpb.2024.108471","url":null,"abstract":"<div><div>This study proposes a compact deep learning (DL) architecture and a highly parallelized computing hardware platform to reconstruct the blood flow index (BFi) in diffuse correlation spectroscopy (DCS). We leveraged a rigorous analytical model to generate autocorrelation functions (ACFs) to train the DL network. We assessed the accuracy of the proposed DL using simulated and milk phantom data. Compared to convolutional neural networks (CNN), our lightweight DL architecture achieves 66.7% and 18.5% improvement in MSE for BFi and the coherence factor <em>β</em>, using synthetic data evaluation. The accuracy of rBFi over different algorithms was also investigated. We further simplified the DL computing primitives using subtraction for feature extraction, considering further hardware implementation. We extensively explored computing parallelism and fixed-point quantization within the DL architecture. With the DL model's compact size, we employed unrolling and pipelining optimizations for computation-intensive for-loops in the DL model while storing all learned parameters in on-chip BRAMs. We also achieved pixel-wise parallelism, enabling simultaneous, real-time processing of 10 and 15 autocorrelation functions on Zynq-7000 and Zynq-UltraScale+ field programmable gate array (FPGA), respectively. Unlike existing FPGA accelerators that produce BFi and the <em>β</em> from autocorrelation functions on standalone hardware, our approach is an encapsulated, end-to-end on-chip conversion process from intensity photon data to the temporal intensity ACF and subsequently reconstructing BFi and <em>β</em>. This hardware platform achieves an on-chip solution to replace post-processing and miniaturize modern DCS systems that use single-photon cameras. We also comprehensively compared the computational efficiency of our FPGA accelerator to CPU and GPU solutions.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"258 ","pages":"Article 108471"},"PeriodicalIF":4.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of TandemHeartTM combined with ProtekDuoTM as right ventricular support device: A simulation approach TandemHeartTM 结合 ProtekDuoTM 作为右心室支持装置的作用:模拟方法
IF 4.9 2区 医学
Computer methods and programs in biomedicine Pub Date : 2024-10-28 DOI: 10.1016/j.cmpb.2024.108473
Beatrice De Lazzari , Roberto Badagliacca , Massimo Capoccia , Marc O Maybauer , Claudio De Lazzari
{"title":"The role of TandemHeartTM combined with ProtekDuoTM as right ventricular support device: A simulation approach","authors":"Beatrice De Lazzari ,&nbsp;Roberto Badagliacca ,&nbsp;Massimo Capoccia ,&nbsp;Marc O Maybauer ,&nbsp;Claudio De Lazzari","doi":"10.1016/j.cmpb.2024.108473","DOIUrl":"10.1016/j.cmpb.2024.108473","url":null,"abstract":"<div><h3>Background and Objective</h3><div>Right ventricular failure increases short-term mortality in the setting of acute myocardial infarction, cardiogenic shock, advanced left-sided heart failure and pulmonary arterial hypertension. Percutaneous and surgically implanted right ventricular assist devices (RVAD) have been investigated in different clinical settings. The use of the ProtekDuo™ is currently a promising approach due to its features such as groin-free approach leading to early mobilisation, easy percutaneous deployment, compatibility with different pumps and oxygenators, and adaptability to different configurations. The aim of this work was to simulate the behaviour of the TandemHeart™ pump applied “<em>in series</em>” and “<em>in parallel</em>“ mode and the combination of TandemHeart™ and ProtekDuo™ cannula as RVAD using CARDIOSIM© software simulator platform.</div></div><div><h3>Methods</h3><div>To achieve our aim, two new modules have been implemented in the software. The first module simulated the TandemHeart™ pump in RVAD configuration, both as a right atrial-pulmonary arterial and a right ventricular-pulmonary arterial connection, driven by four different rotational speeds. The second module reproduced the behaviour of the ProtekDuo™ cannula plus TandemHeart™.</div></div><div><h3>Results</h3><div>The effects induced on the main haemodynamic and energetic variables were analysed for both the right atrial-pulmonary arterial and right ventricular-pulmonary arterial configuration with different pump rotational speed and following Milrinone administration. The TandemHeart™ increased right ventricular end systolic volume by 10 %, larger increases were evident for higher speeds (6000 and 7500 rpm) and connections with 21-Fr inflow and 17-Fr outflow cannula, respectively. Both TandemHeart™ and ProtekDuo™ support increased left ventricular preload. When different RVAD settings were used, Milrinone therapy increased the left ventricular pressure-volume area and decreased the right pressure-volume area slightly. A reduction in oxygen consumption (demand) was observed with reduced right stroke work and pressure volume area and increased oxygen supply (coronary blood flow).</div></div><div><h3>Conclusions</h3><div>The outcome of our simulations confirms the effective haemodynamic assistance provided by the ProtekDuo™ as observed in the acute clinical setting. A simulation approach based on pressure-volume analysis combined with modified time-varying elastance and lumped-parameter modelling remains a suitable tool for clinical applications.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"257 ","pages":"Article 108473"},"PeriodicalIF":4.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing biomechanical outcomes in proximal femoral osteotomy through optimised blade plate sizing: A neuromusculoskeletal-informed finite element analysis 通过优化刀板尺寸提高股骨近端截骨术的生物力学效果:以神经肌肉骨骼为基础的有限元分析。
IF 4.9 2区 医学
Computer methods and programs in biomedicine Pub Date : 2024-10-28 DOI: 10.1016/j.cmpb.2024.108480
Emmanuel Eghan-Acquah , Alireza Y Bavil , David Bade , Martina Barzan , Azadeh Nasseri , David J Saxby , Stefanie Feih , Christopher P Carty
{"title":"Enhancing biomechanical outcomes in proximal femoral osteotomy through optimised blade plate sizing: A neuromusculoskeletal-informed finite element analysis","authors":"Emmanuel Eghan-Acquah ,&nbsp;Alireza Y Bavil ,&nbsp;David Bade ,&nbsp;Martina Barzan ,&nbsp;Azadeh Nasseri ,&nbsp;David J Saxby ,&nbsp;Stefanie Feih ,&nbsp;Christopher P Carty","doi":"10.1016/j.cmpb.2024.108480","DOIUrl":"10.1016/j.cmpb.2024.108480","url":null,"abstract":"<div><div>Proximal femoral osteotomy (PFO) is a frequently performed surgical procedure to correct hip deformities in the paediatric population. The optimal size of the blade plate implant in PFO is a critical but underexplored factor influencing biomechanical outcomes. This study introduces a novel approach to refine implant selection by integrating personalized neuromusculoskeletal modelling with finite element analysis. Using computed tomography scans and walking gait data from six paediatric patients with various pathologies and deformities, we assessed the impact of four distinct implant width-to-femoral neck diameter (W-D) ratios (30 %, 40 %, 50 %, and 60 %) on surgical outcomes. The results show that the risk of implant yield generally decreases with increasing W-D ratio, except for Patient P2, where the yield risk remained below 100 % across all ratios. The implant factor of safety (FoS) increased with larger W-D ratios, except for Patients P2 and P6, where the highest FoS was 2.60 (P2) and 0.49 (P6) at a 60 % W-D ratio. Bone-implant micromotion consistently remained below 40 µm at higher W-D ratios, with a 50 % W-D ratio striking the optimal balance for mechanical stability in all patients except P6. Although interfragmentary and principal femoral strains did not display consistent trends across all patients, they highlight the need for patient-specific approaches to ensure effective fracture healing. These findings highlight the importance of patient-specific considerations in implant selection, offering surgeons a more informed pathway to enhance patient outcomes and extend implant longevity. Additionally, the insights gained from this study provide valuable guidance for manufacturers in designing next-generation blade plates tailored to improve biomechanical performance in paediatric orthopaedics.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"257 ","pages":"Article 108480"},"PeriodicalIF":4.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovering explainable biomarkers for breast cancer anti-PD1 response via network Shapley value analysis 通过网络沙普利值分析发现乳腺癌抗 PD1 反应的可解释生物标志物
IF 4.9 2区 医学
Computer methods and programs in biomedicine Pub Date : 2024-10-26 DOI: 10.1016/j.cmpb.2024.108481
Chenxi Sun, Zhi-Ping Liu
{"title":"Discovering explainable biomarkers for breast cancer anti-PD1 response via network Shapley value analysis","authors":"Chenxi Sun,&nbsp;Zhi-Ping Liu","doi":"10.1016/j.cmpb.2024.108481","DOIUrl":"10.1016/j.cmpb.2024.108481","url":null,"abstract":"<div><h3>Background and objective</h3><div>Immunotherapy holds promise in enhancing pathological complete response rates in breast cancer, albeit confined to a select cohort of patients. Consequently, pinpointing factors predictive of treatment responsiveness is of paramount importance. Gene expression and regulation, inherently operating within intricate networks, constitute fundamental molecular machinery for cellular processes and often serve as robust biomarkers. Nevertheless, contemporary feature selection approaches grapple with two key challenges: opacity in modeling and scarcity in accounting for gene-gene interactions</div></div><div><h3>Methods</h3><div>To address these limitations, we devise a novel feature selection methodology grounded in cooperative game theory, harmoniously integrating with sophisticated machine learning models. This approach identifies interconnected gene regulatory network biomarker modules with priori genetic linkage architecture. Specifically, we leverage Shapley values on network to quantify feature importance, while strategically constraining their integration based on network expansion principles and nodal adjacency, thereby fostering enhanced interpretability in feature selection. We apply our methods to a publicly available single-cell RNA sequencing dataset of breast cancer immunotherapy responses, using the identified feature gene set as biomarkers. Functional enrichment analysis with independent validations further illustrates their effective predictive performance</div></div><div><h3>Results</h3><div>We demonstrate the sophistication and excellence of the proposed method in data with network structure. It unveiled a cohesive biomarker module encompassing 27 genes for immunotherapy response. Notably, this module proves adept at precisely predicting anti-PD1 therapeutic outcomes in breast cancer patients with classification accuracy of 0.905 and AUC value of 0.971, underscoring its unique capacity to illuminate gene functionalities</div></div><div><h3>Conclusion</h3><div>The proposed method is effective for identifying network module biomarkers, and the detected anti-PD1 response biomarkers can enrich our understanding of the underlying physiological mechanisms of immunotherapy, which have a promising application for realizing precision medicine.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"257 ","pages":"Article 108481"},"PeriodicalIF":4.9,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信