Composites and Advanced Materials最新文献

筛选
英文 中文
Evaluation of fatigue life of fiberglass reinforced polyester composite materials using Weibull analysis methods 用 Weibull 分析方法评估玻璃纤维增强聚酯复合材料的疲劳寿命
Composites and Advanced Materials Pub Date : 2024-02-01 DOI: 10.1177/26349833241239800
D. Djeghader, B. Redjel
{"title":"Evaluation of fatigue life of fiberglass reinforced polyester composite materials using Weibull analysis methods","authors":"D. Djeghader, B. Redjel","doi":"10.1177/26349833241239800","DOIUrl":"https://doi.org/10.1177/26349833241239800","url":null,"abstract":"A composite material based on a polyester resin and fiberglass reinforcement was fabricated by the contact molding process with a fiber percentage of 40%. This material underwent a cyclic fatigue loading and 3-point bending at slow speed. The experimental results were used to plot the S–N curve based on a linear function, Hwang & Han’s relation and Basquin’s hypothesis. A probabilistic analysis based on the Weibull distribution with two and three parameters was used in order to adjust and predict the fatigue behavior of the material used in the study. This analysis made it possible to plot the fatigue curve for different levels of reliability (Ps = 99%, Ps = 90%, Ps = 50%, Ps = 36.8% and Ps = 10%), in order to identify first time to failure for material reliability and safety limits.","PeriodicalId":10608,"journal":{"name":"Composites and Advanced Materials","volume":"381 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140469257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance of blockboard using particle composite bagasse waste as core layer materials 使用蔗渣颗粒复合材料作为芯层材料的细木工板的性能
Composites and Advanced Materials Pub Date : 2024-02-01 DOI: 10.1177/26349833241232996
Indra Mawardi, Nurdin Nurdin, Fakhriza Fakhriza, Ali Jannifar, Hanif Razak, R. Putra Jaya
{"title":"Performance of blockboard using particle composite bagasse waste as core layer materials","authors":"Indra Mawardi, Nurdin Nurdin, Fakhriza Fakhriza, Ali Jannifar, Hanif Razak, R. Putra Jaya","doi":"10.1177/26349833241232996","DOIUrl":"https://doi.org/10.1177/26349833241232996","url":null,"abstract":"Using wood as the core blockboard material has affected forest exploration, which causes damage to the ecosystem and the environment. The availability of large amounts of bagasse and styrofoam waste has become a potential alternative to replace wood. This study evaluates the properties of blockboards made from a composite of bagasse waste particles as the core layer, combined with thin plywood as the face layers, and styrofoam waste as the matrix for the bagasse particle composites. The blockboards were prepared through cold compression, and the effects of particles size and the ratio of particles to styrofoam on physical and mechanical properties such as density, moisture content, water resistance, bending strength, internal bond, and screw withdrawal resistance were investigated. The results demonstrated a linear improvement in both physical and mechanical properties with an increase in styrofoam content and a decrease in the particle size of bagasse. The blockboard with fine particles and 70 wt % of styrofoam exhibited the highest density of 0.59 g/cm3, moisture content of 8.54%, water absorption resistance of 33.71%, bending strength of 11.88 MPa, internal bond of 0.64 MPa, and screw withdrawal of 823.36 N. An increase in the density of the core layer was found to enhance all physical and mechanical properties of the blockboard. Consequently, the blockboard produced exhibits the potential to serve as an alternative to traditional blockboards.","PeriodicalId":10608,"journal":{"name":"Composites and Advanced Materials","volume":"193 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140462364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vibration studies of an axially moving epoxy-carbon nanofiber composite beam in thermal environment—Effect of various nanofiber reinforcements 热环境中轴向移动环氧树脂-碳纳米纤维复合梁的振动研究--各种纳米纤维增强材料的影响
Composites and Advanced Materials Pub Date : 2024-02-01 DOI: 10.1177/26349833241239343
Krzysztof Marynowski
{"title":"Vibration studies of an axially moving epoxy-carbon nanofiber composite beam in thermal environment—Effect of various nanofiber reinforcements","authors":"Krzysztof Marynowski","doi":"10.1177/26349833241239343","DOIUrl":"https://doi.org/10.1177/26349833241239343","url":null,"abstract":"Free vibrations of an axially moving multiscale composite beam in thermal environment are analyzed. The beam material is epoxy resin with variously reinforced and randomly oriented or aligned in electric field carbon nanofibers (CNFs). To describe the thermomechanical properties of the beam material, published dynamic characteristic of stationary multiscale composites were taken into consideration. Using the frequency–temperature equivalence principle, the nanocomposite material of the beam is modeled using four-parameter fractional rheological model. The dynamic characteristics of the multiscale polymer beam in the frequency domain made it possible to determine the partial equation of motion of the axially moving beam. The Galerkin method is used to solve the governing partial differential equation. The effects of various nanofiber reinforcements of randomly oriented, and aligned in electric field fibers at different temperatures, on the free vibration of the axially moving beam are investigated.","PeriodicalId":10608,"journal":{"name":"Composites and Advanced Materials","volume":"87 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140465583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance analysis of similar and dissimilar self-piercing riveted joints in aluminum alloys 铝合金同类和异类自冲铆接性能分析
Composites and Advanced Materials Pub Date : 2023-12-01 DOI: 10.1177/26349833231218012
Lun Zhao, Xiaole Huo, Zeshan Abbas, Guo Zixin, Md Shafiqul Islam
{"title":"Performance analysis of similar and dissimilar self-piercing riveted joints in aluminum alloys","authors":"Lun Zhao, Xiaole Huo, Zeshan Abbas, Guo Zixin, Md Shafiqul Islam","doi":"10.1177/26349833231218012","DOIUrl":"https://doi.org/10.1177/26349833231218012","url":null,"abstract":"In this work, similar (2A12) and dissimilar (6061) aluminum alloy sheets are validly joined using self-piercing rivet process. A quasi-static experiment is proposed to investigate the mechanical behaviors, failures mode, and mechanism of the different joints. Moreover, a method based on deep learning algorithm is anticipated to detect the appearance defects of the SPR welded joints. The results indicated that 2A12 joints of similar sheets contained the advantageous static strength and 6061 similar sheet joints had superior anti-vibration performance conducts. The joints with 6061-2A12 sheets introduced the most decent and comprehensive mechanical properties. The main failure mode of 2A12 similar sheet joints was substrate fracture. The performance of the substrate affects the failure mode of the joint and the plasticity of the substrate is better. When the time comes, the failure mode is mostly pull-off failure. Poor plasticity of the substrate can easily lead to substrate breakage. The reason for joint pull-off and button fall-off failure is that there is large plastic deformation in the lower plate of the joint and the mechanical internal locking structure is damaged. 2A12 substrate breakage belongs to a composite fracture that combines intergranular fracture and microvoid aggregation type fracture. The area of the 6061 substrate near the edge of the sample is shear fracture and the area near the center of the sample thickness is dominated by microvoid aggregation type normal fracture. The effectiveness of the method was verified by conducting a series of experiments and the detection accuracy of the method can reach about 90%. The detection speed was as high as 50 frames per second (FPS), which can effectively solve the problem that the rivet quality was difficult to monitor.","PeriodicalId":10608,"journal":{"name":"Composites and Advanced Materials","volume":" 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138620460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of animal shells-derived hydroxyapatite reinforced epoxy bio-composites 动物贝壳衍生羟基磷灰石增强环氧生物复合材料的特性分析
Composites and Advanced Materials Pub Date : 2023-12-01 DOI: 10.1177/26349833231223984
I. Oladele, A. S. Taiwo, Li Onuh, Samson Oluwagbenga Adelani, Samuel Olufemi Balogun, S. Lephuthing, P. Olubambi
{"title":"Characterization of animal shells-derived hydroxyapatite reinforced epoxy bio-composites","authors":"I. Oladele, A. S. Taiwo, Li Onuh, Samson Oluwagbenga Adelani, Samuel Olufemi Balogun, S. Lephuthing, P. Olubambi","doi":"10.1177/26349833231223984","DOIUrl":"https://doi.org/10.1177/26349833231223984","url":null,"abstract":"Environmental issues have geared the interest of researchers toward the use of naturally occurring materials for various applications in recent times. Hydroxyapatite particles (HAp) for biomedical applications were synthesized from egg and snail shells and used for the fabrication of bio-composites in this research. The shells were prepared by thoroughly cleaning before subjecting to calcination as well as wet-chemical precipitation treatment to obtain 50 µ sized hydroxyapatite particles that were used for the development of the bio-composites. The composites were fabricated with an open mold stir casting technique after mixing the constituents in predetermined proportions. Mechanical, wear, and physical properties evaluations were carried out on the composites and control samples while the images of the fractured surfaces were examined using a scanning electron microscope. It was revealed from the results that the addition of hydroxyapatite to epoxy improved the properties of the composite where most of the optimal values emerged from 15 wt% HAp-reinforced samples. It was discovered that snail shell HAp-based composites had superior enhancements than the eggshell HAp-based composites which showed that the source of the animal shell influences the characteristics of the ensuing properties. Flexural strength and modulus were 63.95 and 774.64 MPa, respectively; hardness was 40.25 HS, wear index was 0.07, and thermal conductivity was 0.545 W/mK for the snail shell HAp-based composites. Hence, synthesized HAp from snail shells is more structurally stable than eggshell-based and can be used for biomedical applications.","PeriodicalId":10608,"journal":{"name":"Composites and Advanced Materials","volume":"40 18","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139193820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on Water Resistance of Polypropylene Based Wood-Plastic Composites Used in Building 建筑用聚丙烯基木塑复合材料的耐水性研究
Composites and Advanced Materials Pub Date : 2023-11-29 DOI: 10.1177/26349833231218017
Zhang Lin, Quan Xiang, Dongmei Xu
{"title":"Study on Water Resistance of Polypropylene Based Wood-Plastic Composites Used in Building","authors":"Zhang Lin, Quan Xiang, Dongmei Xu","doi":"10.1177/26349833231218017","DOIUrl":"https://doi.org/10.1177/26349833231218017","url":null,"abstract":"This research was aimed at studying the preparation of polypropylene based wood plastic composite material by twin-screw extrusion. The effects of the addition of the maleic anhydride (MAH) and wood flour on WPC properties were evaluated. WPC with 4, 5, 6, 7, 8, 9, 10 wt% of MAH contents were prepared. The mechanical properties and water resistance of WPC were studied. The result showed that with the increasing of MAH, the tensile strength of WPC increases at first and then decrease, and water absorption reduced by 39%. After immersing in water for 24 h, the tensile strength of WPC decreases but the impact strength increases, and with the increasing of MAH, the reducing extent of tensile strength increases, but the improvement extent of impact strength gradually decreases. When the MAH content exceeds 8 wt%, the impact strength of dried WPC samples (dried for 24 h) can be recovered basically. WPC with 10, 20, 30, 40 wt% of wood flour contents were prepared. The result showed that with the increasing of wood flour, the tensile strength of WPC increases at first and then decreases, the impact strength decreases, and water absorption increased by 62%. When the wood flour content exceeds 10 wt%, the impact strength of dried WPC samples can only recover partially. WPC containing different wood meal sizes was prepared. The result showed that with the decreasing of wood flour particle size, the water absorption of WPC increases obviously. The impact strength of dried WPC samples is higher than that of unsoaked WPC, when the particle size of wood flour is 60 meshes. It can be seen from the SEM photos that the distance between the wood powder fibers becomes larger after 24 h of WPC soaking in water. The finer the wood flour, the easier it is to aggregate in WPC.","PeriodicalId":10608,"journal":{"name":"Composites and Advanced Materials","volume":"231 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139211365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the effect and optimization of material properties on the printed circuit board 材料性能对印刷电路板的影响及优化研究
Composites and Advanced Materials Pub Date : 2023-11-02 DOI: 10.1177/26349833231209336
Bilbay Fahri Berk, Arslan Erhan, Ediz Barış, Mustafa Cemal Çakır
{"title":"Investigation of the effect and optimization of material properties on the printed circuit board","authors":"Bilbay Fahri Berk, Arslan Erhan, Ediz Barış, Mustafa Cemal Çakır","doi":"10.1177/26349833231209336","DOIUrl":"https://doi.org/10.1177/26349833231209336","url":null,"abstract":"Printed circuit boards (PCBs) have a sandwich structure consisting of an insulating composite layer between conductive copper layers. The material property of the PCB cannot be defined as isotropic due to this special structure. In addition, variables such as the types of hundreds of components on the PCB, material properties, types of solder leads, and thickness of the sandwich structure make it very difficult to create and verify the finite element model of the PCB. The aim of this study is to perform a sensitivity analysis by defining the strain values measured from three points on the PCB with the help of strain gauges as responses and to find the best design variables that correlate with the physical test. The effect of each design parameter on the response function was examined, and the results were obtained with statistical data. The objective function and constraints were determined to find the best correlated finite element model with a physical test, and the best design was obtained by running the optimization model. In this way, the finite element model was calibrated by taking into account the thermal stresses resulting from the heat generated by the transistors and by using optimization methods.","PeriodicalId":10608,"journal":{"name":"Composites and Advanced Materials","volume":"9 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135875401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Welding-based additive manufacturing processes for fabrication of metallic parts 基于焊接的金属零件增材制造工艺
Composites and Advanced Materials Pub Date : 2023-11-01 DOI: 10.1177/26349833231210572
C Rathinasuriyan, PV Elumalai, J Bharani Chandar, K Karthik, Sreenivasa Reddy Medapati, Ahmad Aziz Alahmadi, Mamdooh Alwetaishi, Ali Nasser Alzaed, MA Kalam, Kiran Shahapurkar
{"title":"Welding-based additive manufacturing processes for fabrication of metallic parts","authors":"C Rathinasuriyan, PV Elumalai, J Bharani Chandar, K Karthik, Sreenivasa Reddy Medapati, Ahmad Aziz Alahmadi, Mamdooh Alwetaishi, Ali Nasser Alzaed, MA Kalam, Kiran Shahapurkar","doi":"10.1177/26349833231210572","DOIUrl":"https://doi.org/10.1177/26349833231210572","url":null,"abstract":"Additive Manufacturing (AM) is modernizing the manufacturing industry by enabling the layer-by-layer deposition process to manufacture objects in nearly any form with minimum material waste. However, components developed utilizing the AM process have dimensional constraints. To address this issue, AM-produced metal materials can be coupled with various welding processes. This article focuses on the foundations, highlighting the distinguishing features, capabilities, and challenges of welding-based AM processes by categorizing them into two major groups; arc welding-based AM like Cold Metal Transfer (CMT), Gas Metal Arc Welding (GMAW), Gas Tungsten Arc Welding (GTAW), Plasma Arc Welding (PAW), and high-energy density welding based AM like Laser Beam Welding (LBW) and Electron Beam Welding (EBW). The prior study findings of welding-based AM metal components on mechanical characteristics and microstructural characterization have been addressed. This work will aid researchers, academicians, and professional welders since it gathers vital information on welding-based AM processes. Furthermore, current research in the arena of welding-based AM and its future opportunities has been discussed.","PeriodicalId":10608,"journal":{"name":"Composites and Advanced Materials","volume":"75 13-14","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135272622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Longitudinal tensile analysis of carbon fiber/epoxy composites under the coupling effect of high and low temperature cycle-humidity-bending load 高低温循环-湿度-弯曲载荷耦合作用下碳纤维/环氧复合材料纵向拉伸分析
Composites and Advanced Materials Pub Date : 2023-10-30 DOI: 10.1177/26349833231204642
Jianjun Shi, Wenze Wang, Caorui Liu, Wangcheng Wei, Bin Jia
{"title":"Longitudinal tensile analysis of carbon fiber/epoxy composites under the coupling effect of high and low temperature cycle-humidity-bending load","authors":"Jianjun Shi, Wenze Wang, Caorui Liu, Wangcheng Wei, Bin Jia","doi":"10.1177/26349833231204642","DOIUrl":"https://doi.org/10.1177/26349833231204642","url":null,"abstract":"The coupling effects of high and low temperature-humidity-applied load on the longitudinal tensile mechanical properties and the durability performance of epoxy resin-based carbon fiber reinforced composites (EP-CFRP) are studied in this paper. It considers two high and low alternating temperature ranges [−40°C∼40°C]/[−40°C∼25°C], two humidity conditions (soaking in water and anhydrous), and three load levels of unstressed state or 30% and 60% of the ultimate load. The results indicate that all these three factors have a significant impact on the durability of EP-CFRP. The tensile strength varies with the high and low temperature alternating cycle, showing a trend of first decreasing, then increasing, and then decreasing; however, the peak and valley values appear in the quite different alternating cycle. The coupling effects of these factors have less influence on the tensile modulus. The microcracks generated at the interface between the resin matrix and the fiber have been proved to be the main reason for the strength reduction at the later stage. The coupling effect of humidity and load promotes the expansion of cracks and exacerbates the damage to EP-CFRP. Based on the cumulative damage theory, the residual strength damage model of EP-CFRP under the three-factor coupling action of “high and low temperature cycling-humidity-load” is calibrated by nonlinear fitting method.","PeriodicalId":10608,"journal":{"name":"Composites and Advanced Materials","volume":"62 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136069646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of alloying element on the thermophysical properties of carbon fiber-graphite flakes/copper composites 合金元素对碳纤维-石墨薄片/铜复合材料热物理性能的影响
Composites and Advanced Materials Pub Date : 2023-10-25 DOI: 10.1177/26349833231209775
Youming Chen, Tongle Liu, Guodong Miao, Junchen Huang, Bing Yang, Qian Liu
{"title":"The effect of alloying element on the thermophysical properties of carbon fiber-graphite flakes/copper composites","authors":"Youming Chen, Tongle Liu, Guodong Miao, Junchen Huang, Bing Yang, Qian Liu","doi":"10.1177/26349833231209775","DOIUrl":"https://doi.org/10.1177/26349833231209775","url":null,"abstract":"In this study, carbon fiber-graphite flake/copper composites were prepared by powder metallurgy. The impact of the alloying elements Ti and Zr on the composites’ properties was investigated, and the influence of varying Zr contents on the phase structure and thermal conductivity of the composites was also explored. The results indicate that composites containing Zr exhibit better flexural strength and thermal conductivity compared to those containing Ti. When the volume fraction of carbon fiber is 2% and 2 wt% Zr is added to copper matrix, the carbide layer at the composite interface is uniform and has a thickness of 0.36 μm. The thermal conductivity of the composite material is up to 597.5 W/(m∙K). The mechanical properties of the composites are enhanced by the synergistic effect of adding carbon fiber and alloying matrix and the composite shows a remarkable flexural strength of 150.5 MPa, which is 58.3% higher compared to composites without carbon fiber. Furthermore, the strengthening mechanism of carbon fiber on the mechanical properties of the composites was examined. The thermal conductivity of the multiphase composites was effectively predicted using the Acoustic Mismatch Model (AMM) combined with the MF module of Digimat software, and the impact of Ti or Zr elements on the composites’ thermal conductivity was analyzed.","PeriodicalId":10608,"journal":{"name":"Composites and Advanced Materials","volume":"6 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135216589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信