ChemPhotoChemPub Date : 2025-01-21DOI: 10.1002/cptc.202400370
Cloé Delacourt, Jean-Philippe Goddard, Arnaud Spangenberg, Morgan Cormier
{"title":"Recent Advances in Heterogenization of Photocatalysts on Polymer Supports and Applications in Organic Synthesis","authors":"Cloé Delacourt, Jean-Philippe Goddard, Arnaud Spangenberg, Morgan Cormier","doi":"10.1002/cptc.202400370","DOIUrl":"https://doi.org/10.1002/cptc.202400370","url":null,"abstract":"<p>The photocatalysis is a powerful tool in organic synthesis to generate reactive intermediates and create challenging chemical bonds. The reactivity on such process is mainly controlled by a photocatalyst (PCat) which is designed to ensure both selectivity and efficiency. In the pursuit of more economical and environmentally friendly approaches, the heterogenization of photocatalysts has become increasingly essential, and it is still challenging. Among the various insoluble supports studied, polymers offer several appealing characteristics, such as stability, ease of synthesis, porosity, and recyclability. This review aims to summarize the recent progress in heterogenization of photocatalyst on polymer including the polymerization of PCat, post-grafting of PCat and 3D-printing. For the selected heterogeneous photocatalyst, examples of organic transformations and evidence of photocatalytic efficiency will be discussed.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"9 5","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cptc.202400370","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143939246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPhotoChemPub Date : 2025-01-20DOI: 10.1002/cptc.202400360
Yoo Sang Kim, Hyun Kyu Lee, Woo Jin Choi, Suhyeon Kim, Jun Ho Yoon, Wansoo Kim, Jae Pil Kim
{"title":"Synthesis and Characterization of Indolenine-Based Squaraine Dyes and their Photophysical Properties in Polymer Thin Films","authors":"Yoo Sang Kim, Hyun Kyu Lee, Woo Jin Choi, Suhyeon Kim, Jun Ho Yoon, Wansoo Kim, Jae Pil Kim","doi":"10.1002/cptc.202400360","DOIUrl":"https://doi.org/10.1002/cptc.202400360","url":null,"abstract":"<p>Four squaraine dyes bearing various N substituents with different electron-withdrawing abilities were synthesized in this study. The effects of these substituents on the photophysical properties and stabilities of the squaraine dyes were analyzed. Squaraine-doped polymer films were fabricated using the synthesized squaraine dyes, and all films demonstrated excellent transmittances of ~100 % in the non-absorptive region, along with extremely low transmittances in the 630–640 nm wavelength region. The thermal stabilities of the squaraine films were evaluated after thermal treatment at elevated temperatures. The film fabricated using polysulfone, which possesses a high glass-transition temperature, maintained an absorption of >97 % after heat treatment, indicating its excellent thermal stability. Furthermore, all squaraine films maintained absorptions of >70 % after 24 h of light irradiation, surpassing the photostabilities of conventional polymethine dyes. It was concluded that squaraine dyes are sufficiently effective and applicable for producing optical films, owing to their excellent optical properties and high stabilities.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"9 5","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143939298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Controlling the Chiroptical Properties of Pyrene-Based Tweezers by Conformation Locking","authors":"Renitta Benny, Nithish Kumar, Anshuman Bera, Rakshantha Srithar, Susnata Pramanik, Sivaranjana Reddy Vennapusa, Soumen De","doi":"10.1002/cptc.202400396","DOIUrl":"https://doi.org/10.1002/cptc.202400396","url":null,"abstract":"<p>Circularly polarized excimer emission is highly sought-after due to its potential in advanced optoelectronic and sensing applications. However, achieving precise control over this phenomenon remains a significant challenge. To address this challenge, we have designed a system where circularly polarized excimer emission could be controlled via conformation locking and aggregation. The structural conformations were extensively examined using circular dichroism spectroscopy, X-ray crystallography, <sup>1</sup>H NMR spectroscopy, and molecular modelling. Self-assembly was triggered by adding water to THF solutions, with water-induced aggregation leading to redshifts in absorption bands and excimer emission in T<b>1</b> (major monomer emission), T<b>2</b> (minor monomer emission) and T<b>3</b> at high water content. Additionally, the effects of aggregation on chiroptical properties were studied using circular dichroism and circularly polarized luminescence spectroscopy, revealing a reduction in circular dichroism signal and circularly polarized luminescence quenching with increasing water content. Notably, T<b>3</b> displayed both excimer and monomer circularly polarized luminescence signals, reflecting two excited-state geometries. This research underscores the impact of rigidity on the photophysical and chiroptical properties of pyrene and opens avenues for further exploration of BINOL-pyrene-based macrocycles and cages.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"9 5","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143938888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPhotoChemPub Date : 2025-01-16DOI: 10.1002/cptc.202400322
Firdaus Ahmad Ahanger, Ayaz Ahmad Manhas, Umar Nabi Tak, Gousia, Saima Sidiq, Showkat Rashid, Mohd Sajid Lone, Aijaz Ahmad Dar
{"title":"Micelle Assisted Multi-Step Energy Relay in a Blend of Fluorophores as a Potential Light Harvesting System","authors":"Firdaus Ahmad Ahanger, Ayaz Ahmad Manhas, Umar Nabi Tak, Gousia, Saima Sidiq, Showkat Rashid, Mohd Sajid Lone, Aijaz Ahmad Dar","doi":"10.1002/cptc.202400322","DOIUrl":"https://doi.org/10.1002/cptc.202400322","url":null,"abstract":"<p>We report a pH-responsive system comprising three pH responsive fluorophores, 7-Hydroxy coumarin (7HC), Fluorescein (Flu), and Rhodamine B (RhB) wherein an efficient two-step Förster Resonance Energy Transfer (FRET) process is facilitated. Upon excitation of 7HC, energy is sequentially transferred from 7HC (primary donor) to Flu (primary acceptor) and then to RhB (secondary acceptor). The FRET processes were studied at pH 7 and 12 in the presence of surfactants: cationic Tetradecyltrimethylammonium bromide (TTAB), anionic Sodium Dodecyl Sulfate (SDS), and neutral polyoxyethylene[4] lauryl ether (Brij 30). Differences in FRET efficiencies across surfactant media were interpreted by analyzing the solubilization sites of the fluorophores using UV-Visible and fluorescence spectroscopy. The pH-dependence of the FRET acted as an ON-OFF switch, showing higher efficiency in alkaline media. Among the surfactant systems, the two-step FRET operated most efficiently in alkaline TTAB micelles, with efficiencies reaching up to 50 % for 7HC to Flu (FRET-1), 30 % for Flu to RhB (FRET-2), and 23 % for the overall transfer. At a donor-to-acceptor ratio of 1000/80/80, energy transfer efficiencies touched 74 % for FRET-1 and 84 % for FRET-2. This highlights TTAB micelles as promising scaffolds for efficient multi-step FRET-based artificial light-harvesting systems.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"9 4","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143801745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPhotoChemPub Date : 2025-01-16DOI: 10.1002/cptc.202400341
Francesco Lodola, Hector Miranda-Salinas, Suman Kuila, Andrew Danos, Andrew P. Monkman
{"title":"Identifying Key Physical Properties of Simple Organic Drop Cast Films that give Visible to Ultraviolet Light Up-Conversion","authors":"Francesco Lodola, Hector Miranda-Salinas, Suman Kuila, Andrew Danos, Andrew P. Monkman","doi":"10.1002/cptc.202400341","DOIUrl":"https://doi.org/10.1002/cptc.202400341","url":null,"abstract":"<p>We demonstrate UV-emitting films of 2,5-diphenyloxazole (PPO) sensitised by 3,3′-carbonylbis(7-diethylaminocoumarin) (CBDAC), prepared by simple drop casting with rapid solvent evaporation, giving up-converted emission even at low excitation intensities. The mechanisms of up-conversion and triplet quenching in these films has been studied through time-resolved and steady-state spectroscopy. The CBDAC sensitizer aggregates strongly even at low concentrations, with CBDAC phosphorescence being observed in all films, indicating that many triplet excitons do not transfer to the surrounding PPO annihilator. Nonetheless, at very low sensitiser concentrations (1 : 40000 CBDAC : PPO), up-converted PPO UV emission is observed at room temperature which is critically dependent on the film formation conditions. Only in films cast onto substrates held at 60 °C is dominant TTA-UC observed. Comparing to similar sensitised films of TIPS-naphthalene, which are TTA-inactive, we deduce that π-stacking of the PPO, prevented by the TIPS side groups in the TIPS-naphthalene films is crucial for efficient triplet diffusion and up-conversion.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"9 5","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cptc.202400341","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143939437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pnictogen-Bridged Sulfoximines: Effects of Element and N-Substituent on Excited-State Dynamics","authors":"Koki Mizuta, Haruki Shimoji, Toshiki Fujii, Shunsuke Yamamoto, Hideo Ohkita, Kensuke Naka, Hiroaki Imoto","doi":"10.1002/cptc.202400336","DOIUrl":"https://doi.org/10.1002/cptc.202400336","url":null,"abstract":"<p>Pnictogen (Pn=As, Sb, Bi)-bridged sulfoximines were synthesized by introducing phenyl (Ph) and benzyl (Bn) groups onto the nitrogen atom. Single-crystal X-ray diffraction analysis and density functional theory (DFT) calculations revealed a weak closed-shell interaction between Pn and N or O. As- and Sb-bridged sulfoximines with a Bn group exhibited dual fluorescence in solution, while the others primarily showed a single emission. The viscosity and polarity of the solvent significantly affected dual-emission behavior. DFT calculations demonstrated the excited-state dynamics, showing that Pn⋅⋅⋅N (or Pn⋅⋅⋅O) interactions were either elongated or shortened upon photo-excitation, depending on the Pn type and the substituent on N.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"9 4","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143801836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPhotoChemPub Date : 2025-01-10DOI: 10.1002/cptc.202400362
Karin Schniererová, Jakub Orság, Martin Putala, Henrieta Stankovičová
{"title":"Oxygen Atom Replacement in Coumarins: A Strategy to Tune Spectral Properties","authors":"Karin Schniererová, Jakub Orság, Martin Putala, Henrieta Stankovičová","doi":"10.1002/cptc.202400362","DOIUrl":"https://doi.org/10.1002/cptc.202400362","url":null,"abstract":"<p>Coumarins are highly polarized fluorophores with indispensable use in various applications, such as bioimaging, sensing, and optoelectronics, due to their inherent merits of tunable photophysical properties. Despite their established utility, ongoing research aims to further enhance and diversify their emission characteristics. Recent studies have demonstrated that strategic modifications, such as element replacement within the coumarin core, can significantly alter key attributes like absorption, emission, and quantum yields, all while preserving the fundamental benefits of their skeletal framework. This concept article highlights the latest progress in heteroatom substitution, including oxygen-to-nitrogen, silicon, sulfur, and carbon replacements, showcasing their impact on spectral tuning and their potential for the design of next-generation fluorophores.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"9 4","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143801586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"All-Optical Spatial Self-Phase and Cross Phase Modulation Using an NLO Active Pyrylium Dye towards an Optical OR Gate","authors":"Safna Saif, Lekshmi Lekshmanan, Karthika Sankar, Titu Thomas, Saju Pillai, Ayyappanpillai Ajayaghosh, Priya Rose Thankamani","doi":"10.1002/cptc.202400334","DOIUrl":"https://doi.org/10.1002/cptc.202400334","url":null,"abstract":"<p>All-optical modulation and optical switching with nonlinear materials are integral parts of the advancing all-optical communication network. This report discusses the synthesis of a promising pyrylium dye, pyrylium-NH<sub>2</sub> for NLO based applications and probes its spatial self-phase and cross phase modulation (XPM) properties. This dye can be effectively used for all-optical modulation and OR logic gate operation. A 532 nm DPSS laser of tunable power is used to study the intensity dependent nonlinear refractive indices (n<sub>2</sub>) of the dye in ethanol, methanol and acetone. The dye has shown significant n<sub>2</sub> compared to the existing literature. Concentration dependence, incident intensity dependence and temporal evolution of the far field diffraction annuli rings in these three solvents were studied. The all-optical modulation of a weak signal beam is demonstrated using a high intensity pump beam via cross phase modulation, paving the way to optical switching applications.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"9 4","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143801574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPhotoChemPub Date : 2025-01-10DOI: 10.1002/cptc.202580101
Kumpei Kozuka, Keiichi Imato, Yousuke Ooyama
{"title":"Front Cover: Organohalogenochromism: Toward Colorimetric Detection of Volatile Organic Halogen Compounds (ChemPhotoChem 1/2025)","authors":"Kumpei Kozuka, Keiichi Imato, Yousuke Ooyama","doi":"10.1002/cptc.202580101","DOIUrl":"https://doi.org/10.1002/cptc.202580101","url":null,"abstract":"<p><b>The Front Cover</b> illustrates organohalogenochromism (OHC) which induces a significant hypsochromic or bathochromic shift of photoabsorption band of dye in halogenated solvents. The expression of OHC would be ascribable to the specific intermolecular interaction between the organohalogen and the dye molecules, including halogen−anion interaction (i.e. halogen bond) and halogen/π interaction. The insight into the OHC allows us to create an optical spectroscopic method and functional dye material for detection and visualization of toxic volatile organohalogen compounds. More information can be found in the Concept article by Yousuke Ooyama and co-workers (DOI: 10.1002/cptc.202400187).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"9 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cptc.202580101","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143113703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPhotoChemPub Date : 2025-01-08DOI: 10.1002/cptc.202400337
Fengyuan Li, Yang Yang, Dilnaz Kadyrma, Anar Dosmukhambetova, Prof. Zhe Liu, Prof. Zhanar Kalkozova, Prof. Ruihao Chen, Prof. Hongqiang Wang
{"title":"Beyond the Horizon: Exploration of Perovskite Solar Cells in Extreme Environments","authors":"Fengyuan Li, Yang Yang, Dilnaz Kadyrma, Anar Dosmukhambetova, Prof. Zhe Liu, Prof. Zhanar Kalkozova, Prof. Ruihao Chen, Prof. Hongqiang Wang","doi":"10.1002/cptc.202400337","DOIUrl":"https://doi.org/10.1002/cptc.202400337","url":null,"abstract":"<p>Current research on perovskite solar cells (PSCs) predominantly targets terrestrial applications, with limited studies in extreme environments. Deploying PSCs in space and underwater necessitates meeting stringent performance and stability criteria. For space, PSCs must withstand high radiation and temperature extremes, while underwater, light intensity attenuation, spectrum changes, and varying water quality can degrade PSCs performance. Inspiringly, PSCs offer several advantages, including being lightweight, cost-effective, easy to manufacture, and having adjustable bandgaps. These features make them more promising for applications in extreme conditions versus other photovoltaic (PV) devices. To further advance research on PSCs in extreme environments, this concept briefly describes the background of PSC applications in extreme conditions, summarizes the environmental characteristics and their impacts on the devices in both space and underwater settings, and comprehensively reviews the latest advancements in these fields. Finally, potential strategies for ensuring the long-term stable operation of PSCs under extreme stressors are proposed.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"9 4","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143801542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}