Cheng Pan , Yi Guo , Gang Liu , Haiyang Ding , Zhihang Fu
{"title":"Modeling and coverage analysis of heterogeneous sub-6GHz-millimeter wave networks","authors":"Cheng Pan , Yi Guo , Gang Liu , Haiyang Ding , Zhihang Fu","doi":"10.1016/j.jiixd.2023.06.002","DOIUrl":"10.1016/j.jiixd.2023.06.002","url":null,"abstract":"<div><p>The joint adoption of sub-6GHz and millimeter wave (mmWave) technology can prevent the blind spots of coverage, enabling comprehensive coverage while realizing high-speed communication rate. According to the sensitivity of mmWave, base stations should be more densely deployed, which is not well described by existing Poisson hole process (PHP) and the Poisson point process (PPP) models. This paper establishes a sub-6GHz and mmWave hybrid heterogeneous cellular network based on the modified Poisson hole process (MPHP). In our proposed model, the sub-6GHz base stations follow the PPP, and the mmWave base stations (MBSs) follow MPHP distribution. The expressions of the coverage probability are derived by using the interference calculation method of integrating the nearest sector exclusion area. Our theoretical analysis has been verified through simulation results, suggesting that the increase in the cell radius decreases the coverage probability of signal-to-interference-plus-noise ratio (SINR), whereas the increase in the sector parameter has the opposite effect. The variation of sub-6GHz base stations (SBSs) density imposes more significant impact than the MBSs on the SINR coverage probability. In addition, the decrease in MBSs density will reduce the average bandwidth allocated to the user equipment (UE), thus reducing the rate coverage probability.</p></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"1 4","pages":"Pages 321-329"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949715923000252/pdfft?md5=eec6bbb4eb23cd6b9124579fd0e57b91&pid=1-s2.0-S2949715923000252-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79225631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yong Zeng, Zhenyu Zhang, Jiale Liu, Jianfeng Ma, Zhihong Liu
{"title":"Pri-EMO: A universal perturbation method for privacy preserving facial emotion recognition","authors":"Yong Zeng, Zhenyu Zhang, Jiale Liu, Jianfeng Ma, Zhihong Liu","doi":"10.1016/j.jiixd.2023.08.001","DOIUrl":"10.1016/j.jiixd.2023.08.001","url":null,"abstract":"<div><p>Facial emotion have great significance in human-computer interaction, virtual reality and people's communication. Existing methods for facial emotion privacy mainly concentrate on the perturbation of facial emotion images. However, cryptography-based perturbation algorithms are highly computationally expensive, and transformation-based perturbation algorithms only target specific recognition models. In this paper, we propose a universal feature vector-based privacy-preserving perturbation algorithm for facial emotion. Our method implements privacy-preserving facial emotion images on the feature space by computing tiny perturbations and adding them to the original images. In addition, the proposed algorithm can also enable expression images to be recognized as specific labels. Experiments show that the protection success rate of our method is above 95% and the image quality evaluation degrades no more than 0.003. The quantitative and qualitative results show that our proposed method has a balance between privacy and usability.</p></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"1 4","pages":"Pages 330-340"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949715923000513/pdfft?md5=6acd805c7dcedd8fb30cc2ecf57750e3&pid=1-s2.0-S2949715923000513-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84208076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CSC-GCN: Contrastive semantic calibration for graph convolution network","authors":"Xu Yang, Kun Wei, Cheng Deng","doi":"10.1016/j.jiixd.2023.10.001","DOIUrl":"10.1016/j.jiixd.2023.10.001","url":null,"abstract":"<div><p>Graph convolutional networks (GCNs) have been successfully applied to node representation learning in various real-world applications. However, the performance of GCNs drops rapidly when the labeled data are severely scarce, and the node features are prone to being indistinguishable with stacking more layers, causing over-fitting and over-smoothing problems. In this paper, we propose a simple yet effective contrastive semantic calibration for graph convolution network (CSC-GCN), which integrates stochastic identity aggregation and semantic calibration to overcome these weaknesses. The basic idea is the node features obtained from different aggregation operations should be similar. Toward that end, identity aggregation is utilized to extract semantic features from labeled nodes, while stochastic label noise is adopted to alleviate the over-fitting problem. Then, contrastive learning is employed to improve the discriminative ability of the node features, and the features from different aggregation operations are calibrated according to the class center similarity. In this way, the similarity between unlabeled features and labeled ones from the same class is enhanced while effectively reducing the over-smoothing problem. Experimental results on eight popular datasets show that the proposed CSC-GCN outperforms state-of-the-art methods on various classification tasks.</p></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"1 4","pages":"Pages 295-307"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949715923000598/pdfft?md5=efb05ea241fae4078424c9e6580d2e50&pid=1-s2.0-S2949715923000598-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135762387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Information metasurfaces and reconfigurable intelligent surfaces","authors":"Long Li, Rui Zhang, Tie Jun Cui","doi":"10.1016/j.jiixd.2023.07.001","DOIUrl":"https://doi.org/10.1016/j.jiixd.2023.07.001","url":null,"abstract":"","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"1 3","pages":"Pages 179-181"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49701836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Wei , Chongwen Huang , George C. Alexandropoulos , Ahmet M. Elbir , Zhaohui Yang , Zhaoyang Zhang , Marco Di Renzo , Mérouane Debbah , Chau Yuen
{"title":"Wireless communications empowered by reconfigurable intelligent surfaces: Model-based vs model-free channel estimation","authors":"Li Wei , Chongwen Huang , George C. Alexandropoulos , Ahmet M. Elbir , Zhaohui Yang , Zhaoyang Zhang , Marco Di Renzo , Mérouane Debbah , Chau Yuen","doi":"10.1016/j.jiixd.2023.06.010","DOIUrl":"https://doi.org/10.1016/j.jiixd.2023.06.010","url":null,"abstract":"<div><p>Reconfigurable intelligent surfaces (RISs) are lately being attractive for their great potential in future sixth generation wireless communications (6G), which is attributed to their affordable energy consumption and easy integration. However, the large numbers of low-cost reflecting elements comprising RISs impose challenges for channel acquisition in various RIS-based wireless applications, such as RIS-enhanced orthogonal frequency-division multiplexing and multi-user multiple-input multiple-output systems. In this article, we first overview the state-of-the-art RIS hardware architectures designed to assist channel estimation for RIS-empowered wireless communication systems. We also overview existing channel estimation approaches, which are categorized into model-based and model-free techniques, and discuss their advantages and limitations depending on the RIS deployment. Design challenges with RIS-empowered systems in terms of hardware and other parameter limitations are presented, together with future research directions for channel estimation in RIS-based wireless systems, such as RISs with extremely large numbers of elements, multi-hop communications with RISs, and frequency division duplexing for high mobility systems.</p></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"1 3","pages":"Pages 253-266"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49727935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DRL-based max-min fair RIS discrete phase shift optimization for MISO-OFDM systems","authors":"Peng Chen, Huaqian Zhang, Xiao Li, Shi Jin","doi":"10.1016/j.jiixd.2023.06.003","DOIUrl":"https://doi.org/10.1016/j.jiixd.2023.06.003","url":null,"abstract":"<div><p>In this paper, we investigate a reconfigurable intelligent surface (RIS) assisted downlink orthogonal frequency division multiplexing (OFDM) transmission system. Taking into account hardware constraint, the RIS is considered to be organized into several blocks, and each block of RIS share the same phase shift, which has only 1-bit resolution. With multiple antennas at the base station (BS) serving multiple single-antenna users, we try to design the BS precoder and the RIS reflection phase shifts to maximize the minimum user spectral efficiency, so as to ensure fairness. A deep reinforcement learning (DRL) based algorithm is proposed, in which maximum ratio transmission (MRT) precoding is utilized at the BS and the dueling deep Q-network (DQN) framework is utilized for RIS phase shift optimization. Simulation results demonstrate that the proposed DRL-based algorithm can achieve almost optimal performance, while has much less computation consumption.</p></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"1 3","pages":"Pages 281-293"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49760517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Song Zhang , Hao Xue , Yicen Li , Jiaqi Han , Haixia Liu , Long Li , Tie Jun Cui
{"title":"Generation and regulation of two-dimensional autofocusing Airy beams based on holographic metasurfaces","authors":"Song Zhang , Hao Xue , Yicen Li , Jiaqi Han , Haixia Liu , Long Li , Tie Jun Cui","doi":"10.1016/j.jiixd.2023.05.002","DOIUrl":"https://doi.org/10.1016/j.jiixd.2023.05.002","url":null,"abstract":"<div><p>This paper proposes a new method to generate a two-dimensional (2D) Airy beam and Airy autofocusing beam by using the scalar holographic metasurface with amplitude-phase modulation in the microwave band. The proposed holographic metasurface comprises subwavelength patch unit cells with a period of fewer than 1/8 wavelengths, which means that it has the finer sampling for electromagnetic waves and can simultaneously achieve precise modulations for the amplitude and phase of electromagnetic waves. Firstly, the 2D-Airy beam with quasi-non-diffraction and self-bending characteristics is generated, from which the holographic metasurface is designed to realize four different 2D-Airy beams with the same focus, achieving the 2D-Airy autofocusing beam in the microwave frequency. The holographic metasurface for Airy beam generation has high efficiency and an ultra-lower profile. Meanwhile, for applying the Airy beam in wireless power transfer (WPT), the efficiency of the generated Airy beam and Airy autofocusing beam is calculated for the first time in the microwave field. The simulation results show that the efficiency of the 2D-Airy beam can reach 66% at 150 mm away from the metasurface, while the efficiency of the 2D-Airy autofocusing beam at the focus, which is 280 mm from the metasurface, can reach 35%. The theoretical, simulated, and measured results show that the proposed method and holographic metasurfaces can flexibly achieve the special characteristics of self-autofocusing and self-bending Airy beams in the microwave domain, providing an effective path for wireless power transfer (WPT) scenario with radial obstructions.</p></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"1 3","pages":"Pages 182-196"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49766530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kai Qu, Ke Chen, Jianmin Zhao, Na Zhang, Qi Hu, Junming Zhao, Tian Jiang, Yijun Feng
{"title":"An electromechanically reconfigurable intelligent surface for enhancing sub-6G wireless communication signal","authors":"Kai Qu, Ke Chen, Jianmin Zhao, Na Zhang, Qi Hu, Junming Zhao, Tian Jiang, Yijun Feng","doi":"10.1016/j.jiixd.2023.06.009","DOIUrl":"https://doi.org/10.1016/j.jiixd.2023.06.009","url":null,"abstract":"<div><p>Reconfigurable intelligent surface (RIS) is emerged as a promising technique to solve the challenges faced by future wireless communication networks. Although the most commonly used electrically-controlled RISs can achieve millisecond-scale speed of dynamic switch, they have a large number of microwave circuit elements (such as PIN diodes or varactors) which will bring non-negligible insertion loss, and the complicity of the bias network to electrically addressing each element will increase with the expansion of the RIS aperture. Aiming at further reducing the fabrication cost and power consumption, herein an electromechanical RIS used for sub-6G wireless communication is proposed. The electromechanical RIS is designed with a passive metasurface and step-motor driver modules, providing simultaneous high-efficiency reflection (over 80%) and continuous reflection phase coverage of 360°. Through electromechanical control, the RIS system can realize different reflective wavefront shaping, and has been employed in the indoor sub-6G wireless environment demonstrating a maximum signal improvement of 8.3 dB. The proposed electromechanical RIS is particularly useful for wireless signal enhancement in static blind area, and has the obvious advantage of not requiring continuous power supply after the RIS being regulated. Therefore, it greatly reduces the overall cost and power consumption which may have potentials in indoor application scenarios for improving wireless communication performance.</p></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"1 3","pages":"Pages 207-216"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49755531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marco Di Renzo , Abdelhamed Mohamed , Alessio Zappone , Gabriele Gradoni , Marco Rossi , Massimo Moccia , Giuseppe Castaldi , Vincenzo Galdi
{"title":"Effects of realistic reradiation models in digital reconfigurable intelligent surfaces","authors":"Marco Di Renzo , Abdelhamed Mohamed , Alessio Zappone , Gabriele Gradoni , Marco Rossi , Massimo Moccia , Giuseppe Castaldi , Vincenzo Galdi","doi":"10.1016/j.jiixd.2023.06.005","DOIUrl":"https://doi.org/10.1016/j.jiixd.2023.06.005","url":null,"abstract":"<div><p>Reconfigurable intelligent surfaces (RISs) are a promising technology for wireless communication applications, but their performance is often optimized using simplified electromagnetic reradiation models. In this study, we explore the impact on the RIS performance of more realistic assumptions, including the (possibly imperfect) quantization of the reflection coefficients, sub-wavelength inter-element spacing, near-field location, and presence of electromagnetic interference. We find that design constraints can cause an RIS to reradiate power in unwanted directions. Therefore, it is important to optimize an RIS by considering the entire reradiation pattern. Overall, our study indicates that a 2-bit digitally controllable RIS with a nearly constant reflection amplitude and RIS elements with a size and inter-element spacing between (1/8)th and (1/4)th of the signal wavelength may offer a reasonable tradeoff between performance, complexity, and cost.</p></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"1 3","pages":"Pages 238-252"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49767619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fangyuan Liao, Yuhan Ruan, Hangyu Zhang, Rui Zhang, Tao Li, Yongzhao Li
{"title":"Reciprocity evaluation based adaptive CCM reconstruction in FDD multi-antenna systems","authors":"Fangyuan Liao, Yuhan Ruan, Hangyu Zhang, Rui Zhang, Tao Li, Yongzhao Li","doi":"10.1016/j.jiixd.2023.04.001","DOIUrl":"https://doi.org/10.1016/j.jiixd.2023.04.001","url":null,"abstract":"<div><p>In view of the difficulty of obtaining downlink channel state information, partial reciprocity based channel covariance matrix (CCM) reconstruction has attracted a lot of attention in frequency division duplex (FDD) multi-antenna systems. Taking both the impact of CCM reconstruction on system performance and design complexity, we investigate an adaptive CCM reconstruction in this paper. Specifically, to effectively evaluate the validity of the reciprocity, we firstly analyze the characteristics of the partial reciprocity and define a reciprocity evaluation criterion. Then, we propose a partial antenna based angular power spectrum (APS) estimating algorithm to further reduce the complexity of the CCM reconstruction. Finally, simulation results demonstrate the superiority of our proposed schemes.</p></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"1 2","pages":"Pages 148-155"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49753818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}