{"title":"Contagion-induced risk: An application to the global export network","authors":"E. Vicente, A. Mateos, E. Mateos","doi":"10.1016/j.jcmds.2021.100010","DOIUrl":"https://doi.org/10.1016/j.jcmds.2021.100010","url":null,"abstract":"<div><p>In many systems, the state of each of their components can itself be a source of risk affecting the other components, and it is not easy to aggregate these individual values together with the interconnecting structural elements of the network. There are simulation models in the literature that establish propagation curves for the population as a whole, especially in the epidemiological case, but these models do not provide a clear analytical expression of the risk borne by each of the network nodes. Moreover, classical models, such as the generalized cascade model, are not necessarily convergent. Neither can the individual values of each node be aggregated on the same scale as they were measured. This paper proposes a mathematical model that makes it possible to analyze the propagation of risk in the face of a given adverse event that may reach all the elements of a network and precisely calculate the risk borne by each node according to its own vulnerability and the relationships with the other nodes, which may be more or less vulnerable and constitute additional sources of risk. It is shown that the new model ensures convergence and that the aggregated results can be interpreted in terms of the risk measurement scale previously given for each node. In addition, the global import–export network is used to illustrate how political or economic instability in one state can generate crises in other states.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"1 ","pages":"Article 100010"},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772415821000055/pdfft?md5=82f3893819e0ad2c6abff625b636d520&pid=1-s2.0-S2772415821000055-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91677865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Statistical theory and practice of the inverse power Muth distribution","authors":"Christophe Chesneau , Varun Agiwal","doi":"10.1016/j.jcmds.2021.100004","DOIUrl":"https://doi.org/10.1016/j.jcmds.2021.100004","url":null,"abstract":"<div><p>The Muth distribution and its derivation have been used to construct numerous statistical models in recent years, with applications in a variety of fields. In this paper, we use the inverse scheme to introduce the inverse power Muth distribution. It thus constitutes a new three-parameter heavy-tailed lifetime distribution belonging to the family of inverse distributions, which does not appear to have received adequate attention in the literature. We naturally call it inverse power Muth distribution. Two complementary parts compose the article. The first part aims to determine the main statistical properties of the inverse power Muth distribution, such as the shape behavior of the probability density and hazard rate functions, the expression of the quantile function and the related quantities, and some moment measures. The second part is devoted to its practical aspects, with a focus on its modeling capabilities. We examine the estimation of the model parameters via several well-established methods, including classical and Bayesian estimation methods. Then, we illustrate the flexibility and potential usefulness of the inverse power Muth model by means of a simulation study and two real datasets. A fair investigation reveals that it can outperform existing and comparable three-parameter models also based on the inverse scheme.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"1 ","pages":"Article 100004"},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277241582100002X/pdfft?md5=63f3e2e82539c48379d7341006c11f32&pid=1-s2.0-S277241582100002X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90014828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}