Crop Design最新文献

筛选
英文 中文
Transcriptome analysis of chickpea during heat stress unveils the signatures of long intergenic non-coding RNAs (lincRNAs) and mRNAs in the heat-QTL region 鹰嘴豆在热胁迫下的转录组分析揭示了长基因间非编码rna (lincRNAs)和mrna在热qtl区域的特征
Crop Design Pub Date : 2023-06-01 DOI: 10.1016/j.cropd.2023.100026
Sailaja Bhogireddy , Himabindu Kudapa , Prasad Bajaj , Vanika Garg , Annapurna Chitikineni , Sourav Nayak , Rajeev K. Varshney
{"title":"Transcriptome analysis of chickpea during heat stress unveils the signatures of long intergenic non-coding RNAs (lincRNAs) and mRNAs in the heat-QTL region","authors":"Sailaja Bhogireddy ,&nbsp;Himabindu Kudapa ,&nbsp;Prasad Bajaj ,&nbsp;Vanika Garg ,&nbsp;Annapurna Chitikineni ,&nbsp;Sourav Nayak ,&nbsp;Rajeev K. Varshney","doi":"10.1016/j.cropd.2023.100026","DOIUrl":"https://doi.org/10.1016/j.cropd.2023.100026","url":null,"abstract":"<div><p>In plants, besides the role of messenger RNAs (mRNAs) in gene expression, long intergenic non-coding RNAs (lincRNAs) play a key role in regulating various biological processes. Chickpea (<em>Cicer arietinum</em> L.), an important legume crop, is sensitive to extreme temperature regimes. Here, we identified the lincRNAs and mRNAs in three chickpea genotypes contrasting for heat stress response (two tolerant- ICC 1356, ICC 15614; one sensitive- ICC 4567) and investigated their role in heat stress. A total of 894 putative lincRNAs and 61,110 mRNAs were identified from leaf and root tissues at the vegetative and reproductive stages of the plant under control and heat stress conditions. Co-expression studies revealed the significant association of lincRNAs with mRNAs which are attributed to heat stress leaf samples at the reproductive stage. Further, mRNAs encoding heat shock transcription factors (HSFs), heat shock proteins (HSPs), starch, and sucrose metabolism pathway genes played an essential role in mitigating heat stress. Furthermore, three key lincRNAs underlying chickpea's heat-quantitative trait locus (QTL) region were identified. This study provided new insights into the regulation of heat stress tolerance in chickpea by identifying candidate lincRNAs and mRNAs.</p></div>","PeriodicalId":100341,"journal":{"name":"Crop Design","volume":"2 1","pages":"Article 100026"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49709745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
The complex interplay between plant-microbe and virus interactions in sustainable agriculture: Harnessing phytomicrobiomes for enhanced soil health, designer plants, resource use efficiency, and food security 可持续农业中植物-微生物和病毒相互作用之间的复杂相互作用:利用植物微生物组增强土壤健康、设计植物、资源利用效率和粮食安全
Crop Design Pub Date : 2023-06-01 DOI: 10.1016/j.cropd.2023.100028
Ashim Das Astapati , Soumitra Nath
{"title":"The complex interplay between plant-microbe and virus interactions in sustainable agriculture: Harnessing phytomicrobiomes for enhanced soil health, designer plants, resource use efficiency, and food security","authors":"Ashim Das Astapati ,&nbsp;Soumitra Nath","doi":"10.1016/j.cropd.2023.100028","DOIUrl":"https://doi.org/10.1016/j.cropd.2023.100028","url":null,"abstract":"<div><p>The present-day climate change scenario represents a substantial peril to the global population concerning food security, given the potential impacts on agricultural productivity, food availability, and accessibility. The excessive use of agrochemicals, such as fertilizers and pesticides, leads to the deterioration of soil health as well. Sustainable land-use practices without perturbing the soil ecosystem are achievable only with a comprehensive mechanism. The current need for sustainable agriculture is fulfilled by harnessing the noble services of plant-microbial association. Microhabitats around plant roots represent the region of maximum microbial activity. Microbiomes play a functional role in affecting plant growth, soil fertility and biogeochemical cycles. Plant-microbe interactions are highly specific to the host controlled by root exudates, metabolites, environmental factors and symbiotic associations e.g. legume-rhizobia and plant-fungi association. Proper strategies for the use of microbial inoculants will certainly facilitate the various crop improvement programs. The present review, therefore, exemplifies the various studies on the potential of plant microbiomes for sustainable agricultural ecosystems coupled with assuring food security. The review also summarizes recent trends in plant microbiome diversity, the relationship between host plant and microbe, transgenic plants, designer plants and their role in mitigating soil stress. Nevertheless, the future of the global population and food production rely on the prospects of plant microbiome ingenuity.</p></div>","PeriodicalId":100341,"journal":{"name":"Crop Design","volume":"2 1","pages":"Article 100028"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49709579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Rice dep1 variety maintains larger stomatal conductance to enhance photosynthesis under low nitrogen conditions 低氮条件下,水稻品种保持较大的气孔导度以促进光合作用
Crop Design Pub Date : 2023-06-01 DOI: 10.1016/j.cropd.2023.100025
Yihong Li , Xiachen Lv , Mengmeng Rui , Jiang Hu , Vadim S. Volkov , Dali Zeng , Yizhou Wang
{"title":"Rice dep1 variety maintains larger stomatal conductance to enhance photosynthesis under low nitrogen conditions","authors":"Yihong Li ,&nbsp;Xiachen Lv ,&nbsp;Mengmeng Rui ,&nbsp;Jiang Hu ,&nbsp;Vadim S. Volkov ,&nbsp;Dali Zeng ,&nbsp;Yizhou Wang","doi":"10.1016/j.cropd.2023.100025","DOIUrl":"https://doi.org/10.1016/j.cropd.2023.100025","url":null,"abstract":"<div><p>The <em>DEP1</em> gene, which corresponds to the erect panicle architecture, shows a pleiotropic effect in increasing grain yield and nitrogen use efficiency in rice. Nevertheless, it remains unclear how nitrogen nutrition affects the photosynthesis in <em>dep1</em> variety. In the study, we used W7, which carries the gain-of-function <em>dep1</em> allele and its counterpart wild type plants, in pot trials under two nitrogen conditions. We investigated the differences in photosynthesis, stomatal conductance, and other photosynthetic parameters between the two rice varieties at different levels of nitrogen supply. Our results indicate that <em>dep1</em> has a higher photosynthetic capacity under low nitrogen conditions due to the larger stomatal conductance. This work reveals that <em>dep1</em> is more adaptable under a low nitrogen environment by analysis from the perspective of photosynthesis, stomatal function, and nitrogen uptake and assimilation, which provides a theoretical basis for revealing the photosynthetic efficiency of <em>dep1</em> variety under low nitrogen conditions.</p></div>","PeriodicalId":100341,"journal":{"name":"Crop Design","volume":"2 1","pages":"Article 100025"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49720535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Core photomorphogenic regulators connect waterlogging response with DNA methylation in Brassica napus 核心光形态发生调控因子将甘蓝型油菜内涝反应与DNA甲基化联系起来
Crop Design Pub Date : 2023-06-01 DOI: 10.1016/j.cropd.2023.100024
Yiyi Guo, Ting Zhao, Jie Dong
{"title":"Core photomorphogenic regulators connect waterlogging response with DNA methylation in Brassica napus","authors":"Yiyi Guo,&nbsp;Ting Zhao,&nbsp;Jie Dong","doi":"10.1016/j.cropd.2023.100024","DOIUrl":"https://doi.org/10.1016/j.cropd.2023.100024","url":null,"abstract":"","PeriodicalId":100341,"journal":{"name":"Crop Design","volume":"2 1","pages":"Article 100024"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49709512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An efficient method to quantify silique (fruit) parameters in rapeseed and other crops 一种定量油菜及其他作物果实参数的有效方法
Crop Design Pub Date : 2023-06-01 DOI: 10.1016/j.cropd.2023.100023
Yushun Jiao , Baoling Liang , Xiang Li , Dawei Zhao , Guangsheng Yang , Dengfeng Hong
{"title":"An efficient method to quantify silique (fruit) parameters in rapeseed and other crops","authors":"Yushun Jiao ,&nbsp;Baoling Liang ,&nbsp;Xiang Li ,&nbsp;Dawei Zhao ,&nbsp;Guangsheng Yang ,&nbsp;Dengfeng Hong","doi":"10.1016/j.cropd.2023.100023","DOIUrl":"https://doi.org/10.1016/j.cropd.2023.100023","url":null,"abstract":"","PeriodicalId":100341,"journal":{"name":"Crop Design","volume":"2 1","pages":"Article 100023"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49709746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Genome-wide landscapes of genes and repeatome reveal the genomic differences between the two subspecies of peanut (Arachis hypogaea) 花生(arachhis hypogaea)两个亚种的基因和重复组全基因组图谱揭示了其基因组差异
Crop Design Pub Date : 2023-06-01 DOI: 10.1016/j.cropd.2023.100029
R.S. Bhat , K. Shirasawa , S.S. Gangurde , M.G. Rashmi , K. Sahana , M.K. Pandey
{"title":"Genome-wide landscapes of genes and repeatome reveal the genomic differences between the two subspecies of peanut (Arachis hypogaea)","authors":"R.S. Bhat ,&nbsp;K. Shirasawa ,&nbsp;S.S. Gangurde ,&nbsp;M.G. Rashmi ,&nbsp;K. Sahana ,&nbsp;M.K. Pandey","doi":"10.1016/j.cropd.2023.100029","DOIUrl":"https://doi.org/10.1016/j.cropd.2023.100029","url":null,"abstract":"<div><p>Distribution and structural features of genes, repeat elements and transposable elements (TEs) were studied to identify the genomic differences between the two subspecies (ssp. <em>hypogaea</em> and ssp. <em>fastigiata</em>) of peanut (<em>Arachis hypogaea</em> L.). A total of 67128 predicted genes, 2738666 copies of TEs and 162361 tandem repeats from the reference genome of Tifrunner were employed for this study. Of the 67128 genes, 33622 were reading on the plus strand, while 33506 were traced on the minus strand. Though B03 had the highest number of genes (4524), A08 recorded the highest density (53 genes/Mb) of genes in the genome. Telomeric regions had the highest density of genes. The average length of the genes was 3971 bp with majority of the genes (39228) containing one to five exons. The gene <em>Arahy.11.0DU9MH</em> had the insertion of 28 different types of TEs, and was the longest gene in the peanut genome. A total of 15731 genes were monomorphic in terms of SNPs across 179 accessions, while 7401 genes showed polymorphism at one nucleotide, indicating very low allelic variation at these genes. Remaining 66% of the genes had two or more SNPs, and therefore showed relatively high allelic variation. Among the 101 unique types of TEs, the <em>Retro</em> elements (869279) followed by <em>CACTA</em> (272596) and <em>Mu</em> (250248) TEs were most predominant. Telomeric regions showed less density of TEs than the regions. On an average, each gene contained 1.8 copies of TEs, and 35706 genes did not have the insertion of any TEs. A QTL-Seq approach could identify 186 SNPs and 26 gene differences between the two subspecies of <em>A</em>. <em>hypogaea</em>. Two of the 26 genes showed allelic variation in terms of SNPs and TEs.</p></div>","PeriodicalId":100341,"journal":{"name":"Crop Design","volume":"2 1","pages":"Article 100029"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49709747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Precise and graded regulation of target protein expression in plants 植物靶蛋白表达的精准分级调控
Crop Design Pub Date : 2023-06-01 DOI: 10.1016/j.cropd.2023.100030
Jinpeng Zou , Kejian Wang
{"title":"Precise and graded regulation of target protein expression in plants","authors":"Jinpeng Zou ,&nbsp;Kejian Wang","doi":"10.1016/j.cropd.2023.100030","DOIUrl":"https://doi.org/10.1016/j.cropd.2023.100030","url":null,"abstract":"","PeriodicalId":100341,"journal":{"name":"Crop Design","volume":"2 1","pages":"Article 100030"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49720752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phytoremediation, stress tolerance and bio fortification in crops through soilless culture 作物无土栽培的植物修复、抗逆性和生物强化
Crop Design Pub Date : 2023-06-01 DOI: 10.1016/j.cropd.2023.100027
Avinash Sharma , Himanshu Pandey , V.S. Devadas , Bhagya D. Kartha , Amit Vashishth
{"title":"Phytoremediation, stress tolerance and bio fortification in crops through soilless culture","authors":"Avinash Sharma ,&nbsp;Himanshu Pandey ,&nbsp;V.S. Devadas ,&nbsp;Bhagya D. Kartha ,&nbsp;Amit Vashishth","doi":"10.1016/j.cropd.2023.100027","DOIUrl":"https://doi.org/10.1016/j.cropd.2023.100027","url":null,"abstract":"<div><p>Crop improvement through soilless cultivation opens up challenges of crop breeding, plant tissue culture and gene manipulation. The plant growing in soilless culture in a closed system, vertical farming, and protected cultivation under controlled climatic factors has immense potential for crop improvement in different aspects of phytoremediation, stress tolerance and bio fortification. The water-based culture and substrate-based culture induce classified stress tolerance in crops such as disease stress, water stress, salt stress under controlled climatic factors and can also be utilized to develop bio fortified crops. The scope and possibilities of crop improvement through water-based culture and substrate-based culture with respect to phytoremediation, stress tolerance, bio fortification, mechanisms of crop improvement and the challenges in crop improvement through soilless culture are reviewed in this paper. The soilless culture has enormous tools to combat problem of crop improvement and call for soilless green revolution. The comparative and non-comparative investigations of metabolomics, phenomics, genomics and proteomics, Donald concept-plant ideotype and Mendel theory-oligogenic and polygenic inheritance are essential to examine in natural &amp; artificial system through soilless crop improvement.</p></div>","PeriodicalId":100341,"journal":{"name":"Crop Design","volume":"2 1","pages":"Article 100027"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49709584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of drought tolerant entries based on stress tolerant indices and physiological traits in RIL population of cotton (Gossypium hirsutum) 基于抗旱指标和生理性状的棉花RIL群体抗旱种质鉴定
Crop Design Pub Date : 2022-11-01 DOI: 10.1016/j.cropd.2022.100014
K. Nandhini , R. Saraswathi , N. Premalatha
{"title":"Identification of drought tolerant entries based on stress tolerant indices and physiological traits in RIL population of cotton (Gossypium hirsutum)","authors":"K. Nandhini ,&nbsp;R. Saraswathi ,&nbsp;N. Premalatha","doi":"10.1016/j.cropd.2022.100014","DOIUrl":"10.1016/j.cropd.2022.100014","url":null,"abstract":"<div><p>The present investigation was taken up in a recombinant inbred population of cotton at advanced stage (F<sub>10</sub>) derived from the cross MCU 5 x TCH 1218 in order to identify drought tolerance lines based on stress tolerant indices and physiological traits. To achieve these objectives, 220 recombinant inbred lines, parents and check KC3 were evaluated across two locations <em>viz.,</em> Coimbatore and Aruppukottai in a randomized block design with two replications during Kharif 2018 and stress tolerant indices were estimated from single plant yield under both locations while physiological traits were recorded at rainfed condition alone.</p><p>Based on different multivariant analyses, 18 RILs <em>viz.,</em> RIL 16, 20, 60, 71, 73, 74, 116, 131, 134, 137, 139, 143, 146, 147, 148, 149, 164 and 168 were identified as best performers under rainfed condition for yield traits which also exhibited lowest mean rank for physiological traits. Among these entries, RIL 74 and RIL 73 had low percentage of injury and high relative water content respectively. Association analysis revealed that tolerance index, yield reduction ratio, stress tolerance index and stress susceptibility index were significant and positively correlated among themselves. Negative correlation was noticed for yield under stress (YS) with tolerance index (TOL), yield reduction ratio (Yr) and stress susceptibility index (SSI). So, these indices are used to identify the susceptible genotypes, while remaining indices exhibit significant and positive association with yield under stress and normal condition. This implies remaining traits are used to discriminate tolerant genotypes.</p></div>","PeriodicalId":100341,"journal":{"name":"Crop Design","volume":"1 2","pages":"Article 100014"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772899422000143/pdfft?md5=7f3b62bb60fbe45493324053818f3a32&pid=1-s2.0-S2772899422000143-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80385543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Research progresses on rice leaf color mutants 水稻叶片颜色突变体的研究进展
Crop Design Pub Date : 2022-11-01 DOI: 10.1016/j.cropd.2022.100015
Weiran Li , Yuchan Zhang , Md. Anisur Rahman Mazumder , Ronghui Pan , Delara Akhter
{"title":"Research progresses on rice leaf color mutants","authors":"Weiran Li ,&nbsp;Yuchan Zhang ,&nbsp;Md. Anisur Rahman Mazumder ,&nbsp;Ronghui Pan ,&nbsp;Delara Akhter","doi":"10.1016/j.cropd.2022.100015","DOIUrl":"10.1016/j.cropd.2022.100015","url":null,"abstract":"<div><p>Rice leaf color variation is a morphological phenotype that is valuable in studying plant metabolism and physiology. Besides, the rice leaf color phenotype can also be utilized in the breeding process. Rice plants with color mutations typically have less efficient photosynthesis, which can result in poor growth and yield reduction. Studies of rice leaf color mutants have led to important findings about the metabolic and regulatory mechanisms of pigment synthesis and accumulation, chloroplast biogenesis and differentiation, photosynthesis, stress response, etc. In this mini-review, we summarized the current progress in the identification and study of rice leaf color mutants, and we also discussed on the limitations and perspectives of the current research about these rice leaf color mutants.</p></div>","PeriodicalId":100341,"journal":{"name":"Crop Design","volume":"1 2","pages":"Article 100015"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772899422000155/pdfft?md5=9acef6479f10e084755678ee0e65b80b&pid=1-s2.0-S2772899422000155-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89264946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信