Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation最新文献

筛选
英文 中文
Properties of the induced acid phosphatase and of the constitutive acid phosphatase of Euglena 绿藻诱导酸性磷酸酶及其组成性酸性磷酸酶的性质
Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation Pub Date : 1966-10-17 DOI: 10.1016/0926-6593(66)90147-0
A. Bennun, J.J. Blum
{"title":"Properties of the induced acid phosphatase and of the constitutive acid phosphatase of Euglena","authors":"A. Bennun,&nbsp;J.J. Blum","doi":"10.1016/0926-6593(66)90147-0","DOIUrl":"10.1016/0926-6593(66)90147-0","url":null,"abstract":"<div><p>The induced acid phosphatase (EC 3.1.3.2) of <em>Euglena gracilis</em> has been solubilized and partially purified. The enzyme has a wide range of substrate specificity and, as predicted from earlier studies on whole cells, the ratio of its activity at pH 5 to its activity at pH 7 in presence of 5 mM fluoride is 1.1 for <span><math><mtext>p-</mtext><mtext>nitrophenylphosphate</mtext></math></span> as substrate. The enzyme is competitively inhibited by arsenate and phosphate, but exhibits mixed competitive-non-competitive inhibition with molybdate. The enzyme migrates towards the cathode when electrophoresis is performed on cellulose acetate strips at pH 8.2. Euglena also contains several other acid phosphatases. The two major constitutive acid phosphatases, which remain particle-bound after a variety of extraction procedures, differ in their thermal stability from each other and from the induced phosphatase. The ratio of activity at pH 5 to the activity at pH 7 <em>plus</em> 5 mM fluoride for the mixture of these two constitutive enzymes is 15. These observations establish that the increase in acid phosphatase activity occurring in Euglena in response to phosphate deprivation is due to the synthesis of a separate enzyme. The heat of thermal inactivation of the purified induced enzyme is about four times larger than the heat of denaturation computed from the effect of temperature on the rate of reversion of the induced phosphatase <em>in vivo</em>.</p></div>","PeriodicalId":100160,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1966-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0926-6593(66)90147-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"15399090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 23
Separation of β-N-acetylglucosaminidase and β-N-acetylgalactosaminidase from calf brain cytoplasm 小牛脑浆中β- n -乙酰氨基葡萄糖酶和β- n -乙酰半乳糖氨基酶的分离
Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation Pub Date : 1966-10-17 DOI: 10.1016/0926-6593(66)90167-6
Yaacov Zvi Frohwein , Shimon Gatt
{"title":"Separation of β-N-acetylglucosaminidase and β-N-acetylgalactosaminidase from calf brain cytoplasm","authors":"Yaacov Zvi Frohwein ,&nbsp;Shimon Gatt","doi":"10.1016/0926-6593(66)90167-6","DOIUrl":"10.1016/0926-6593(66)90167-6","url":null,"abstract":"","PeriodicalId":100160,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1966-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0926-6593(66)90167-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73868800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 29
Observation of specific interaction of mononucleotides with ribonucleases by nuclear magnetic resonance spectra 核磁共振光谱法观察单核苷酸与核糖核酸酶的特异相互作用
Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation Pub Date : 1966-10-17 DOI: 10.1016/0926-6593(66)90146-9
Yasuo Inoue, Sadako Inoue
{"title":"Observation of specific interaction of mononucleotides with ribonucleases by nuclear magnetic resonance spectra","authors":"Yasuo Inoue,&nbsp;Sadako Inoue","doi":"10.1016/0926-6593(66)90146-9","DOIUrl":"10.1016/0926-6593(66)90146-9","url":null,"abstract":"<div><p></p><ul><li><span>1.</span><span><p>1. Nuclear magnetic resonance (NMR) spectra were measured to demonstrate the specific interaction of substrates (mononucleotides) with bovine pancreatic ribonuclease I (ribonucleate pyrimidinenucleotido-2′-transferase (cyclizing), EC 2.7.7.16) and Taka-Diastase ribonuclease T<sub>1</sub> (ribonucleate guaninenucleotido-2′-transferase (cyclizing), EC 2.7.7.26).</p></span></li><li><span>2.</span><span><p>2. The line widths at half height of certain low field signals exhibited by substrates were taken as a measure of the extent of the interaction.</p></span></li><li><span>3.</span><span><p>3. The NMR spectrum of ribonuclease T<sub>1</sub> has been measured and interpreted in the light of its known primary structure for the first time.</p></span></li><li><span>4.</span><span><p>4. The spectra of 2′(3′)UMP and uridine were measured in the presence of native ribonuclease I and thermally denaturated ribonuclease I, and it was found that 2′(3′)UMP signals underwent narrowing after heat treatment whereas the spectrum of uridine remained almost unchanged, indicating that only 2′(3′)UMP interacts effectively with the enzyme molecule and that this interaction does not occur after denaturation of the enzyme.</p></span></li></ul></div>","PeriodicalId":100160,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1966-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0926-6593(66)90146-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"17043502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Mechanism of arginine biosynthesis in Chlamydomonas reinhardti I. Purification and properties of ornithine acetyltransferase 莱茵衣藻精氨酸生物合成机制1 .鸟氨酸乙酰转移酶的纯化及性质
Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation Pub Date : 1966-10-17 DOI: 10.1016/0926-6593(66)90144-5
Maria Staub, G. Dénes
{"title":"Mechanism of arginine biosynthesis in Chlamydomonas reinhardti I. Purification and properties of ornithine acetyltransferase","authors":"Maria Staub,&nbsp;G. Dénes","doi":"10.1016/0926-6593(66)90144-5","DOIUrl":"10.1016/0926-6593(66)90144-5","url":null,"abstract":"<div><p></p><ul><li><span>1.</span><span><p>1. Ornithine acetyltransferase (proposed name, <span><math><mtext>α-N-</mtext><mtext>acetyl-</mtext><mtext>l</mtext><mtext>-ornithine:</mtext><mtext>l</mtext><mtext>-glutamate</mtext></math></span><em>N</em>-acetyltransferase) which catalyzes the first step in arginine biosynthesis, the formation of <em>N</em>-acetylglutamate from <span><math><mtext>α-N-</mtext><mtext>acetyl-</mtext><mtext>l</mtext><mtext>-ornithine</mtext></math></span> and <span>l-glutamate</span>, has been isolated from the freshwater alga <em>Chlamydomonas reinhardti</em>.</p></span></li><li><span>2.</span><span><p>2. The enzyme has a broad pH optimum between 7.5 and 9. The <em>K</em><sub><em>m</em></sub> value of the enzyme at pH 7.5 is 1.3 · 10<sup>−2</sup> M for glutamate and 5.5 · 10 <sup>−3</sup> M for <span><math><mtext>α-N-</mtext><mtext>acetyl-</mtext><mtext>l</mtext><mtext>-ornithine</mtext></math></span>. The reaction is reversible; the equilibrium constant expressed as <em>K</em> = [acetylglutamate][ornithine]/[acetylornithine][glutamate] is 0.47.</p></span></li><li><span>3.</span><span><p>3. Beside the transferase activity, the enzyme has also a hydrolytic activity. The rate of the hydrolytic reaction for <em>α</em>-<em>N</em> acetylornithine is 1% of that of the acetyltransferase reaction.</p></span></li><li><span>4.</span><span><p>4. No specific cofactor has been found. The enzyme is inhibited by <em>p</em>-chloromercuribenzoate, but not by iodoacetate.</p></span></li></ul></div>","PeriodicalId":100160,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1966-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0926-6593(66)90144-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"17043521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 34
Generation of reducing power in chemosynthesis IV. Energy-linked reduction of pyridine nucleotides by succinate in Thiobacillus novellus 化学合成中还原力的产生。新硫杆菌中琥珀酸盐的能量链还原吡啶核苷酸
Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation Pub Date : 1966-10-17 DOI: 10.1016/0926-6593(66)90136-6
M.I.H. Aleem
{"title":"Generation of reducing power in chemosynthesis IV. Energy-linked reduction of pyridine nucleotides by succinate in Thiobacillus novellus","authors":"M.I.H. Aleem","doi":"10.1016/0926-6593(66)90136-6","DOIUrl":"10.1016/0926-6593(66)90136-6","url":null,"abstract":"<div><p></p><ul><li><span>1.</span><span><p>1. The experiments described in this report have indicated that the reduction of NAD<sup>+</sup> by succinate in <em>Thiobacillus novellus</em> is energy-dependent. By blocking the electron transport chain with antimycin A, the endergonic reduction of NAD<sup>+</sup> by succinate required ATP. The pyridine nucleotide reduction involved the mediation of the flavoprotein system as Atabrine and Amytal inhibited the process.</p></span></li><li><span>2.</span><span><p>2. Added mammalian cytochrome <span><math><mtext>c</mtext></math></span> has been shown to couple with the electron transport chain of <em>T. novellus</em> thus effecting the catalysis of the generation of high-energy intermediates coupled to succinate oxidation in the absence of inorganic phosphate. The non-phosphorylated high-energy compounds thus can be generated either at coupling site II by oxidation of succinate with cytochrome <span><math><mtext>c</mtext></math></span> as electron acceptor under anaerobic conditions, or at sites II and III under aerobic conditions, or at site III by the oxidation of ferrocytochrome <span><math><mtext>c</mtext></math></span> involving electron transport to molecular oxygen through the cytochrome oxidase portion of the respiratory chain. In all cases the reduction of NAD<sup>+</sup> was driven by the generated high-energy intermediates involving reversal of electron transfer from the cytochrome <span><math><mtext>c</mtext></math></span> level.</p></span></li><li><span>3.</span><span><p>3. The energy-dependent reduction of NAD<sup>+</sup> by succinate involving reversal of electron transfer from the cytochrome <span><math><mtext>c</mtext></math></span> level was sensitive to 2,4-dinitrophenol, dicumarol and arsenate. It was also inhibited by atabrine and Amytal. Antimycin A was effective in partial inhibition of the reversal of electron transfer. In addition malonate and cyanide were found to be potent inhibitors. The mechanism for the generation and utilization of energy for the reversed electron flow, is discussed.</p></span></li></ul></div>","PeriodicalId":100160,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1966-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0926-6593(66)90136-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"15275847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
Structural requirements for substrate binding to propionyl-CoA carboxylase 底物与丙酰辅酶a羧化酶结合的结构要求
Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation Pub Date : 1966-10-17 DOI: 10.1016/0926-6593(66)90154-8
C.S. Hegre, M.Daniel Lane
{"title":"Structural requirements for substrate binding to propionyl-CoA carboxylase","authors":"C.S. Hegre,&nbsp;M.Daniel Lane","doi":"10.1016/0926-6593(66)90154-8","DOIUrl":"10.1016/0926-6593(66)90154-8","url":null,"abstract":"<div><p>Further purification of propionyl-CoA carboxylase (EC 6.4.1.3) from bovine-liver mitochondria is reported. On the basis of the present and earlier investigations it is concluded that binding of acyl-CoA substrates by the carboxylase occurs through the CoA moiety. The relative maximum velocities of propionyl-CoA, propionyl-dephospho-CoA, and propionyl-pantetheine carboxylation were 1.0, 0.29, and 0.014, respectively; the <span><math><mtext>K</mtext><msub><mi></mi><mn>m</mn></msub></math></span> values for the same substrates were 2.6·10<sup>−4</sup>, 2.8·10<sup>−3</sup>, and 2.4·10<sup>−2</sup> M, respectively. Enzymatic carboxylation of <span><math><mtext>propionyl</mtext><mtext>-N-</mtext><mtext>acetylcysteamine</mtext></math></span> could not be demonstrated. Coenzyme A and 3′-AMP were found to inhibit the carboxylation reaction competitively with respect to propionyl-CoA, whereas, inhibition by 2′-AMP and 5′-AMP was of a mixed type. The binding of acyl-CoA substrate to the carboxylase appears to involve the 3′-phosphate, adenine, and pantoyl moieties of the subsrate. Propionyl-CoA carboxylase is protected from <span><math><mtext>p-</mtext><mtext>chloromercuribenzoate</mtext></math></span> inhibition by propionyl-CoA, whereas, ATP-MgCl<sub>2</sub> facilitates this inhibition.</p></div>","PeriodicalId":100160,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1966-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0926-6593(66)90154-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"17043508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Rat heart pyrophosphate phosphohydrolase activities. Sub-cellular distribution, catalytic properties, and hormonal responses 大鼠心脏焦磷酸盐磷酸水解酶活性。亚细胞分布、催化性质和激素反应
Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation Pub Date : 1966-09-12 DOI: 10.1016/0926-6593(66)90042-7
James F. Soodsma, Robert C. Nordlie
{"title":"Rat heart pyrophosphate phosphohydrolase activities. Sub-cellular distribution, catalytic properties, and hormonal responses","authors":"James F. Soodsma,&nbsp;Robert C. Nordlie","doi":"10.1016/0926-6593(66)90042-7","DOIUrl":"10.1016/0926-6593(66)90042-7","url":null,"abstract":"<div><p></p><ul><li><span>1.</span><span><p>1. Inorganic pyrophosphate metabolism in cardiac tissue homogenates has been investigated.</p></span></li><li><span>2.</span><span><p>2. A sub-cellular distribution study indicated that the predominant PP<sub>i</sub>-metabolizing activity is Mg<sup>2+</sup>-stimulated soluble-fraction phosphohydrolase which is maximally active in the range pH 7–7.5.</p></span></li><li><span>3.</span><span><p>3. Relatively small amounts of activity also were detected in particulate fractions at pH 7.3 in the presence of Mg<sup>2+</sup>. Activity was essentially absent from all fractions at pH 5.6 without added Mg<sup>2+</sup>.</p></span></li><li><span>4.</span><span><p>4. PP<sub>i</sub>-glucose phosphotransferase activity<sup>1</sup> could not be detected in any sub-cellular fraction or in homogenates.</p></span></li><li><span>5.</span><span><p>5. Catalytically, the soluble fraction activity resembles a number of other PP<sub>i</sub> phosphohydrolases with respect to (a) absolute requirement for Mg<sup>2+</sup>, (b) alkaline pH optimum (pH 7.3 for the heart enzyme), and (c) marked sensitivity to Ca<sup>2+</sup> inhibition.</p></span></li><li><span>6.</span><span><p>6. Alloxan diabetes produced an approx. 33% drop in PP<sub>i</sub> phosphohydrolase activity. Insulin administration, adrenalectomy, or cortisone treatment did not produce statistically significant changes in levels of enzymic activity.</p></span></li><li><span>7.</span><span><p>7. Inhibition due to Ca<sup>2+</sup> was reversed by EDTA or additional Mg<sup>2+</sup>, but not by supplemental PP<sub>i</sub>. Citrate inhibited the system both in the presence and absence of Ca<sup>2+</sup>.</p></span></li><li><span>8.</span><span><p>8. A feedback mechanism for retardation of calcification in the vascular system of and near the heart is suggested based on the observations that (a) heart PP<sub>i</sub> phosphohydrolase is extremely sensitive to Ca<sup>2+</sup> inhibition, and (b) calcification of the aorta is inhibited by PP<sub>i</sub> (ref. 2).</p></span></li></ul></div>","PeriodicalId":100160,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1966-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0926-6593(66)90042-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83749334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
A collagenase from Pseudomonas aeruginosa 来自铜绿假单胞菌的胶原酶
Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation Pub Date : 1966-09-12 DOI: 10.1016/0926-6593(66)90052-X
Guenther Schoellmann, Earl Fisher Jr.
{"title":"A collagenase from Pseudomonas aeruginosa","authors":"Guenther Schoellmann,&nbsp;Earl Fisher Jr.","doi":"10.1016/0926-6593(66)90052-X","DOIUrl":"10.1016/0926-6593(66)90052-X","url":null,"abstract":"","PeriodicalId":100160,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1966-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0926-6593(66)90052-X","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86984748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 37
Aspartate transcarbamylase from Escherichia coli I. Inhibition by inorganic anions 大肠杆菌的天冬氨酸转氨基酶1 .无机阴离子的抑制作用
Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation Pub Date : 1966-09-12 DOI: 10.1016/0926-6593(66)90037-3
Kjell Kleppe
{"title":"Aspartate transcarbamylase from Escherichia coli I. Inhibition by inorganic anions","authors":"Kjell Kleppe","doi":"10.1016/0926-6593(66)90037-3","DOIUrl":"10.1016/0926-6593(66)90037-3","url":null,"abstract":"<div><p></p><ul><li><span>1.</span><span><p>1. The effect of different inorganic anions on the catalytic activity of native and subunit aspartate transcarbamylase (carbamoylphosphate: <span>l</span>-aspartate carbamoltransferase, EC 2.1.3.2) has been investigated at pH 7.0 and 25°.</p></span></li><li><span>2.</span><span><p>2. Several inorganic anions were found to inhibit both native and subunit aspartate transcarbamylase. The order of effectiveness for the best inhibitors was: <span><math><mtext>PP</mtext><msub><mi></mi><mn>i</mn></msub><mtext> &gt; F</mtext><msup><mi></mi><mn>−</mn></msup><mtext> &gt; P</mtext><msub><mi></mi><mn>i</mn></msub><mtext> &gt; SO</mtext><msub><mi></mi><mn>4</mn></msub><msup><mi></mi><mn>2−</mn></msup></math></span>.</p></span></li><li><span>3.</span><span><p>3. For each ion except F<sup>−</sup>, a strict competitive relationship was observed between the anion inhibitors and the substrate carbamyl phosphate.</p></span></li><li><span>4.</span><span><p>4. The concentration of <span>l</span>-aspartate also greatly influenced the magnitude of the inhibition. The inhibition increased with increasing concentration of <span>l</span>-aspartate.</p></span></li><li><span>5.</span><span><p>5. The effect of F<sup>−</sup> was shown to be due to a displacement of the pH curve along the pH axis. F<sup>−</sup> inhibited native asparatate transcarbamylase below pH 8 and activated it above this pH.</p></span></li><li><span>6.</span><span><p>6. Possible mechanisms of inhibition are discussed, and it is suggested that an inhibitor-<span>l</span>-aspartate complex is formed at the active site.</p></span></li></ul></div>","PeriodicalId":100160,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1966-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0926-6593(66)90037-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74547690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 29
A spectropolarimetric investigation of bovine cobalt carbonic anhydrase 牛钴碳酸酐酶的光谱偏振学研究
Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation Pub Date : 1966-09-12 DOI: 10.1016/0926-6593(66)90045-2
Sven Lindskog
{"title":"A spectropolarimetric investigation of bovine cobalt carbonic anhydrase","authors":"Sven Lindskog","doi":"10.1016/0926-6593(66)90045-2","DOIUrl":"10.1016/0926-6593(66)90045-2","url":null,"abstract":"","PeriodicalId":100160,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1966-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0926-6593(66)90045-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87117814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信