Steven E. Zhang , Glen T. Nwaila , Shenelle Agard , Julie E. Bourdeau , Emmanuel John M. Carranza , Yousef Ghorbani
{"title":"Big geochemical data through remote sensing for dynamic mineral resource monitoring in tailing storage facilities","authors":"Steven E. Zhang , Glen T. Nwaila , Shenelle Agard , Julie E. Bourdeau , Emmanuel John M. Carranza , Yousef Ghorbani","doi":"10.1016/j.aiig.2023.09.002","DOIUrl":"https://doi.org/10.1016/j.aiig.2023.09.002","url":null,"abstract":"<div><p>Evolution in geoscientific data provides the mineral industry with new opportunities. A direction of geochemical data generation evolution is towards big data to meet the demands of data-driven usage scenarios that rely on data velocity. This direction is more significant where traditional geochemical data are not ideal, which is the case for evaluating unconventional resources, such as tailing storage facilities (TSFs), because they are not static due to sedimentation, compaction and changes associated with hydrospheric and lithospheric processes (e.g., erosion, saltation and mobility of chemical constituents). In this paper, we generate big secondary geochemical data derived from Sentinel-2 satellite-remote sensing data to showcase the benefits of big geochemical data using TSFs from the Witwatersrand Basin (South Africa). Using spatially fused remote sensing and legacy geochemical data on the Dump 20 TSF, we trained a machine learning model to predict in-situ gold grades. Subsequently, we deployed the model to the Lindum TSF, which is 3 km away, over a period of a few years (2015-2019). We were able to visualize and analyze the temporal variation in the spatial distributions of the gold grade of the Lindum TSF. Additionally, we were able to infer extraction sequencing (to the resolution of the data), acid mine drainage formation and seasonal migration. These findings suggest that dynamic mineral resource models and live geochemical monitoring (e.g., of elemental mobility and structural changes) are possible without additional physical sampling.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"4 ","pages":"Pages 137-149"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49721517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Yang , Jingyu Wang , Zhuo Li , Naihao Liu , Rongchang Liu , Jinghuai Gao , Tao Wei
{"title":"Automated stratigraphic correlation of well logs using Attention Based Dense Network","authors":"Yang Yang , Jingyu Wang , Zhuo Li , Naihao Liu , Rongchang Liu , Jinghuai Gao , Tao Wei","doi":"10.1016/j.aiig.2023.09.001","DOIUrl":"https://doi.org/10.1016/j.aiig.2023.09.001","url":null,"abstract":"<div><p>The stratigraphic correlation of well logs plays an essential role in characterizing subsurface reservoirs. However, it suffers from a small amount of training data and expensive computing time. In this work, we propose the Attention Based Dense Network (ASDNet) for the stratigraphic correlation of well logs. To implement the suggested model, we first employ the attention mechanism to the input well logs, which can effectively generate the weighted well logs to serve for further feature extraction. Subsequently, the DenseNet is utilized to achieve good feature reuse and avoid gradient vanishing. After model training, we employ the ASDNet to the testing data set and evaluate its performance based on the well log data set from Northwest China. Finally, the numerical results demonstrate that the suggested ASDNet provides higher prediction accuracy for automated stratigraphic correlation of well logs than state-of-the-art contrastive UNet and SegNet.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"4 ","pages":"Pages 128-136"},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49709857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"2D magnetotelluric inversion based on ResNet","authors":"LiAn Xie , Bo Han , Xiangyun Hu , Ningbo Bai","doi":"10.1016/j.aiig.2023.08.003","DOIUrl":"https://doi.org/10.1016/j.aiig.2023.08.003","url":null,"abstract":"<div><p>In this study, a deep learning algorithm was applied to two-dimensional magnetotelluric (MT) data inversion. Compared with the traditional linear iterative inversion methods, the MT inversion method based on convolutional neural networks (CNN) does not rely on the selection of the initial model parameters and does not fall into the local optima. Although the CNN inversion models can provide a clear electrical interface division, their inversion results may remain prone to abrupt electrical interfaces as opposed to the actual underground electrical situation. To solve this issue, a neural network with a residual network architecture (ResNet-50) was constructed in this study. With the apparent resistivity and phase pseudo-section data as the inputs and with the resistivity parameters of the geoelectric model as the training labels, the modified ResNet-50 model was trained end-to-end for producing samples according to the corresponding production strategy of the study area. Through experiments, the training of the ResNet-50 with the dice loss function effectively solved the issue of over-segmentation of the electrical interface by the cross-entropy function, avoided its abrupt inversion, and overcame the computational inefficiency of the traditional iterative methods. The proposed algorithm was validated against MT data measured from a geothermal field prospect in Huanggang, Hubei Province, which showed that the deep learning method has opened up broad prospects in the field of MT data inversion.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"4 ","pages":"Pages 119-127"},"PeriodicalIF":0.0,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49761319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Determination of future land use changes using remote sensing imagery and artificial neural network algorithm: A case study of Davao City, Philippines","authors":"Cristina E. Dumdumaya , Jonathan Salar Cabrera","doi":"10.1016/j.aiig.2023.08.002","DOIUrl":"https://doi.org/10.1016/j.aiig.2023.08.002","url":null,"abstract":"<div><p>Land use and land cover (LULC) changes refer to alterations in land use or physical characteristics. These changes can be caused by human activities, such as urbanization, agriculture, and resource extraction, as well as natural phenomena, for example, erosion and climate change. LULC changes significantly impact ecosystem services, biodiversity, and human welfare. In this study, LULC changes in Davao City, Philippines, were simulated, predicted, and projected using a multilayer perception artificial neural network (MLP-ANN) model. The MLP-ANN model was employed to analyze the impact of elevation and proximity to road networks (i.e., exploratory maps) on changes in LULC from 2017 to 2021. The predicted 2021 LULC map shows a high correlation to the actual LULC map of 2021, with a kappa index of 0.91 and a 96.68% accuracy. The MLP-ANN model was applied to project LULC changes in the future (i.e., 2030 and 2050). The results suggest that in 2030, the built-up area and trees are increasing by 4.50% and 2.31%, respectively. Unfortunately, water will decrease by up to 0.34%, and crops is about to decrease by approximately 3.25%. In the year 2050, the built-up area will continue to increase to 6.89%, while water and crops will decrease by 0.53% and 3.32%, respectively. Overall, the results show that anthropogenic activities influence the land's alterations. Moreover, the study illustrates how machine learning models can generate a reliable future scenario of land usage changes.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"4 ","pages":"Pages 111-118"},"PeriodicalIF":0.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49709982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shihao Qian , Zhenzhen Dong , Qianqian Shi , Wei Guo , Xiaowei Zhang , Zhaoxia Liu , Lingjun Wang , Lei Wu , Tianyang Zhang , Weirong Li
{"title":"Optimization of shale gas fracturing parameters based on artificial intelligence algorithm","authors":"Shihao Qian , Zhenzhen Dong , Qianqian Shi , Wei Guo , Xiaowei Zhang , Zhaoxia Liu , Lingjun Wang , Lei Wu , Tianyang Zhang , Weirong Li","doi":"10.1016/j.aiig.2023.08.001","DOIUrl":"https://doi.org/10.1016/j.aiig.2023.08.001","url":null,"abstract":"<div><p>Resource-rich shale gas plays a pivotal role in new energy types. The key to scientifically and efficiently developing shale gas fields is to clarify the main factors that affect the production of shale gas wells. In this paper, according to the shale gas reservoir characteristic of the Fuling marine Longmaxi Formation, a single-well geological model was established using the reservoir numerical simulation software CMG. Then, 10,000 different reservoir models were randomly generated for different formation physical parameters, completion parameters, and fracturing parameters using the Monte Carlo method, and these 10,000 models were simulated numerically. The machine learning model uses a dataset of 10,000 different geological, completion, and fracturing parameters as input and 10,000 production curves as output. Multiple machine learning regression methods were used to train and test the dataset, and the optimal method (GBDT algorithm) was selected, and the accuracy R<sup>2</sup> of the test set of the GBDT prediction model is 0.96. A fracturing parameter optimization workflow was constructed by combining a production prediction model with a particle swarm optimizer (PSO). The process can quickly optimize the fracturing parameters and predict the production for each time by targeting the cumulative gas production under different geological conditions. The optimized parameters are Fracture Spacing, Fracture Width, Intrinsic Permeability, Fracture Half-length, Langmuir Pressure, and Langmuir Volume. The initial predicted cumulative gas production was 4.59 × 10<sup>8</sup> m<sup>3</sup>, which was optimized to 4.90 × 10<sup>8</sup> m<sup>3</sup>. The proposed PSO-GBDT proxy model can instantly predict the production of shale gas wells with considerable accuracy, reliability, and efficiency, which is a vital tool for optimizing fracture design. This investigation provides a solid foundation for predicting the production of unconventional gas reservoirs and for parameter optimization.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"4 ","pages":"Pages 95-110"},"PeriodicalIF":0.0,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49709920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improving patch-based simulation using Generative Adversial Networks","authors":"Xiaojin Tan, Eldad Haber","doi":"10.1016/j.aiig.2023.05.002","DOIUrl":"https://doi.org/10.1016/j.aiig.2023.05.002","url":null,"abstract":"<div><p>Multiple-Point Simulation (MPS) is a geostatistical simulation technique commonly used to model complex geological patterns and subsurface heterogeneity. There have been a great variety of implementation methods developed within MPS, of which Patch-Based Simulation is a more recently developed class. While we have witnessed great progress in Patch-Based algorithms lately, they are still faced with two challenges: conditioning to point data and the occurrence of verbatim copy. Both of them are partly due to finite size of Training image, from which a limited size of pattern database is constructed. To address these questions, we propose a novel approach that we call Generative-Patched-Simulation (GPSim), which is based on Generative Adversarial Networks (GAN). With this method, we are able to generate sufficient (in theory an infinite) number of new patches based on the current pattern database. As demonstrated by the results on a simple 2D binary image, this approach shows its potential to address the two issues and thus improve Patch-based Simulation methods.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"4 ","pages":"Pages 76-83"},"PeriodicalIF":0.0,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49709962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hao Mai , Pascal Audet , H.K. Claire Perry , S. Mostafa Mousavi , Quan Zhang
{"title":"Blockly earthquake transformer: A deep learning platform for custom phase picking","authors":"Hao Mai , Pascal Audet , H.K. Claire Perry , S. Mostafa Mousavi , Quan Zhang","doi":"10.1016/j.aiig.2023.05.003","DOIUrl":"https://doi.org/10.1016/j.aiig.2023.05.003","url":null,"abstract":"<div><p>Deep-learning (DL) algorithms are increasingly used for routine seismic data processing tasks, including seismic event detection and phase arrival picking. Despite many examples of the remarkable performance of existing (i.e., pre-trained) deep-learning detector/picker models, there are still some cases where the direct applications of such models do not generalize well. In such cases, substantial effort is required to improve the performance by either developing a new model or fine-tuning an existing one. To address this challenge, we present Blockly Earthquake Transformer(BET), a deep-learning platform for efficient customization of deep-learning phase pickers. BET implements Earthquake Transformer as its baseline model, and offers transfer learning and fine-tuning extensions. BET provides an interactive dashboard to customize a model based on a particular dataset. Once the parameters are specified, BET executes the corresponding phase-picking task without direct user interaction with the base code. Within the transfer-learning module, BET extends the application of a deep-learning P and S phase picker to more specific phases (e.g., Pn, Pg, Sn and Sg phases). In the fine-tuning module, the model performance is enhanced by customizing the model architecture. This no-code platform is designed to quickly deploy reusable workflows, build customized models, visualize training processes, and produce publishable figures in a lightweight, interactive, and open-source Python toolbox.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"4 ","pages":"Pages 84-94"},"PeriodicalIF":0.0,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49709760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Developing soft-computing regression model for predicting bearing capacity of eccentrically loaded footings on anisotropic clay","authors":"Kongtawan Sangjinda , Rungkhun Banyong , Saif Alzabeebee , Suraparb Keawsawasvong","doi":"10.1016/j.aiig.2023.05.001","DOIUrl":"https://doi.org/10.1016/j.aiig.2023.05.001","url":null,"abstract":"<div><p>In this investigation, the bearing capacity solution of a strip footing in anisotropic clay under inclined and eccentric load is analyzed using the numerical simulation model. The lower and upper bound finite element limit analysis (FELA) approaches are utilized to establish precise modeling and derive the numerical outcomes of a strip footing's bearing capacity. All analyses use effective automated adaptive meshes with three iteration stages to enhance the accuracy of the outcomes. The parametric analysis is performed to examine the influence of four dimensionless parameters which are taken into account in this study, namely the anisotropic strength ratio, the dimensionless eccentricity, the load inclination angle, and the adhesion factor to the bearing capacity factor. Furthermore, a new model has been proposed to predict the bearing capacity factor for the calculation of the undrained bearing capacity for footings resting on an anisotropic clay using an advanced data-driven method (MOGA-EPR). The new model takes into account the anisotropy, eccentricity, and inclination of the applied load and could be used with confidence in routine designs of shallow foundations in undrained conditions with the consideration of the anisotropic strengths of clays.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"4 ","pages":"Pages 68-75"},"PeriodicalIF":0.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49721515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Machine learning elucidates the anatomy of buried carbonate reef from seismic reflection data","authors":"Priyadarshi Chinmoy Kumar , Kalachand Sain","doi":"10.1016/j.aiig.2023.04.001","DOIUrl":"https://doi.org/10.1016/j.aiig.2023.04.001","url":null,"abstract":"<div><p>A carbonate build-up or reef is a thick carbonate deposit consisting of mainly skeletal remains of organisms that can be large enough to develop a favourable topography. Delineation of such geologic features provides important input in understanding the basin's evolution and petroleum prospects. Here, we introduce a new attribute called the Reef Cube (RC) meta-attribute that has been computed by fusing several other seismic attributes that are characteristics of the reef through a supervised machine-learning algorithm. The neural learning resulted in a minimum nRMS error of 0.28 and 0.30 and a misclassification percentage of 1.13% and 1.06% for the train and test data sets. The Reef Cube meta-attribute has efficiently captured the anatomy of carbonate reef buried at ∼450 m below the seafloor from high-resolution 3D seismic data in the NW shelf of Australia. The novel approach not only picks up the subsurface architecture of the carbonate reef accurately but also accelerates the process of interpretation with a much-reduced intervention of human analysts. This can be efficiently suited for delimiting any subsurface geologic feature from a large volume of surface seismic data.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"4 ","pages":"Pages 59-67"},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49709854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Models of plate tectonics with the Lattice Boltzmann Method","authors":"Peter Mora , Gabriele Morra , David A. Yuen","doi":"10.1016/j.aiig.2023.03.002","DOIUrl":"https://doi.org/10.1016/j.aiig.2023.03.002","url":null,"abstract":"<div><p>Modern geodynamics is based on the study of a large set of models, with the variation of many parameters, whose analysis in the future will require Machine Learning to be analyzed. We introduce here for the first time how a formulation of the Lattice Boltzmann Method capable of modeling plate tectonics, with the introduction of plastic non-linear rheology, is able to reproduce the breaking of the upper boundary layer of the convecting mantle in plates. Numerical simulation of the earth’s mantle and lithospheric plates is a challenging task for traditional methods of numerical solution to partial differential equations (PDE’s) due to the need to model sharp and large viscosity contrasts, temperature dependent viscosity and highly nonlinear rheologies. Nonlinear rheologies such as plastic or dislocation creep are important in giving mantle convection a past history. We present a thermal Lattice Boltzmann Method (LBM) as an alternative to PDE-based solutions for simulating time-dependent mantle dynamics, and demonstrate that the LBM is capable of modeling an extremely nonlinear plastic rheology. This nonlinear rheology leads to the emergence plate tectonic like behavior and history from a two layer viscosity model. These results demonstrate that the LBM offers a means to study the effect of highly nonlinear rheologies on earth and exoplanet dynamics and evolution.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"4 ","pages":"Pages 47-58"},"PeriodicalIF":0.0,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49709977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}