Annals of Mathematical Logic最新文献

筛选
英文 中文
Automorphisms of the lattice of recursively enumerable sets. Part II: Low sets 递归可枚举集合的格的自同构。第二部分:低集
Annals of Mathematical Logic Pub Date : 1982-06-01 DOI: 10.1016/0003-4843(82)90016-X
Robert I. Soare
{"title":"Automorphisms of the lattice of recursively enumerable sets. Part II: Low sets","authors":"Robert I. Soare","doi":"10.1016/0003-4843(82)90016-X","DOIUrl":"https://doi.org/10.1016/0003-4843(82)90016-X","url":null,"abstract":"","PeriodicalId":100093,"journal":{"name":"Annals of Mathematical Logic","volume":"22 1","pages":"Pages 69-107"},"PeriodicalIF":0.0,"publicationDate":"1982-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0003-4843(82)90016-X","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136558750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
A model of ZF + there exists an inaccessible, in which the dedekind cardinals constitute a natural non-standard model of arithmetic 存在一个不可达的ZF +模型,其中的dedekind基数构成了一个自然的非标准算术模型
Annals of Mathematical Logic Pub Date : 1981-12-01 DOI: 10.1016/0003-4843(81)90017-6
Gershon Sageev
{"title":"A model of ZF + there exists an inaccessible, in which the dedekind cardinals constitute a natural non-standard model of arithmetic","authors":"Gershon Sageev","doi":"10.1016/0003-4843(81)90017-6","DOIUrl":"10.1016/0003-4843(81)90017-6","url":null,"abstract":"","PeriodicalId":100093,"journal":{"name":"Annals of Mathematical Logic","volume":"21 2","pages":"Pages 221-281"},"PeriodicalIF":0.0,"publicationDate":"1981-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0003-4843(81)90017-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83177225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Π12-logic, Part 1: Dilators Π12-logic,第一部分:扩张器
Annals of Mathematical Logic Pub Date : 1981-12-01 DOI: 10.1016/0003-4843(81)90016-4
Jean-Yves Girard
{"title":"Π12-logic, Part 1: Dilators","authors":"Jean-Yves Girard","doi":"10.1016/0003-4843(81)90016-4","DOIUrl":"10.1016/0003-4843(81)90016-4","url":null,"abstract":"","PeriodicalId":100093,"journal":{"name":"Annals of Mathematical Logic","volume":"21 2","pages":"Pages 75-219"},"PeriodicalIF":0.0,"publicationDate":"1981-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0003-4843(81)90016-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84043321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 104
Recursively invariant β-recursion theory 递归不变β-递归理论
Annals of Mathematical Logic Pub Date : 1981-10-01 DOI: 10.1016/0003-4843(81)90015-2
Wolfgand Maass
{"title":"Recursively invariant β-recursion theory","authors":"Wolfgand Maass","doi":"10.1016/0003-4843(81)90015-2","DOIUrl":"https://doi.org/10.1016/0003-4843(81)90015-2","url":null,"abstract":"<div><p>We introduce recursively invariant β-recursion theory as a new approach towards recursion theory on an arbitraty limit ordinal β. We follow Friedman and Sacks and call a subset of β β-recursively enumerable if it is <em>Σ</em><sub>1</sub>-definable over <em>L</em><sub><em>β</em></sub>. Since Friedman-Sacks' notion of a β-finite set is not invariant under β-recursive permutations of β we turn to a different notion. Under all possible invariant generalizations of finite there is a canonical one which we call i-finite. We consider further in the inadmissible case those criteria for the adequacy of generalizations of finite which have earlier been developed by Kreisel, Moschovakis and others. We look at infinitary languages over inadmissible sets <em>L</em><sub><em>β</em></sub> and the compactness theorem for these languages, the characterization of the basic notions of β-recursion theory in terms of model theoretic invariance, the definition of β-recursion theory via an equation calculus and axioma for computation theories. In turns out that in all these approaches the i-finite sets are those subsets of β respectively <em>L</em><sub><em>β</em></sub> which behave like finite sets.</p><p>Invariant β-recursion theory contains classical recursion theory and α-recursion theory as special cases. We start in the second half of this paper the systematic development of invariant β-recursion theory for all limit ordinals β. We study in particular i-degrees, which generalize Turing degrees and α-degrees. Besides 0 (the degree of β-recursive sets) and 0′ (the largest β-r.e. degree) there exist incomparable β-r.e. i-degrees for every limit ordinal β. Similar as the step from ω to α gave rise to the introduction of regular respectively hyperregular sets we arrive in invariant β-recursion theory at the new notion of an i-absolute β-r.e sets. This notion is useful in order to describe a difference among hyperregular β-r.e. sets which occurs exclusively in the inadmissible case. The study of i-degrees is most difficult for those β which are strongly inadmissible (i.e. σ1 cf β&lt;β<sup>∗</sup>). For those strongly inadmissible β where β<sup>∗</sup> is regular we give two new constructions which rely heavily in the combinatorial properties of regular cardinals (◊, closed unbounded sets and the Δ-System lemma). We construct a β-r.e. degree <em>a</em> &gt; 0 such that no degree <em>b</em>⩽<em>a</em> contains a simple set and we prove a splitting theorem for simple β-r.e. sets. We base the definition of a simple set on the general notion of a 1-finite set.</p></div>","PeriodicalId":100093,"journal":{"name":"Annals of Mathematical Logic","volume":"21 1","pages":"Pages 27-73"},"PeriodicalIF":0.0,"publicationDate":"1981-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0003-4843(81)90015-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91637373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Recursively invariant β-recursion theory 递归不变β-递归理论
Annals of Mathematical Logic Pub Date : 1981-10-01 DOI: 10.1016/0003-4843(81)90015-2
W. Maass
{"title":"Recursively invariant β-recursion theory","authors":"W. Maass","doi":"10.1016/0003-4843(81)90015-2","DOIUrl":"https://doi.org/10.1016/0003-4843(81)90015-2","url":null,"abstract":"","PeriodicalId":100093,"journal":{"name":"Annals of Mathematical Logic","volume":"2005 1","pages":"27-73"},"PeriodicalIF":0.0,"publicationDate":"1981-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88354160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
The continuous functionals; computations, recursions and degrees 连续泛函;计算,递归和度
Annals of Mathematical Logic Pub Date : 1981-10-01 DOI: 10.1016/0003-4843(81)90014-0
D. Normann
{"title":"The continuous functionals; computations, recursions and degrees","authors":"D. Normann","doi":"10.1016/0003-4843(81)90014-0","DOIUrl":"https://doi.org/10.1016/0003-4843(81)90014-0","url":null,"abstract":"","PeriodicalId":100093,"journal":{"name":"Annals of Mathematical Logic","volume":"39 1","pages":"1-26"},"PeriodicalIF":0.0,"publicationDate":"1981-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77694283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
The continuous functionals; computations, recursions and degrees 连续泛函;计算,递归和度
Annals of Mathematical Logic Pub Date : 1981-10-01 DOI: 10.1016/0003-4843(81)90014-0
Dag Normann
{"title":"The continuous functionals; computations, recursions and degrees","authors":"Dag Normann","doi":"10.1016/0003-4843(81)90014-0","DOIUrl":"https://doi.org/10.1016/0003-4843(81)90014-0","url":null,"abstract":"","PeriodicalId":100093,"journal":{"name":"Annals of Mathematical Logic","volume":"21 1","pages":"Pages 1-26"},"PeriodicalIF":0.0,"publicationDate":"1981-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0003-4843(81)90014-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91637371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Algebraically prime models 代数素数模型
Annals of Mathematical Logic Pub Date : 1981-08-01 DOI: 10.1016/0003-4843(81)90007-3
John T. Baldwin , David W. Keuker
{"title":"Algebraically prime models","authors":"John T. Baldwin ,&nbsp;David W. Keuker","doi":"10.1016/0003-4843(81)90007-3","DOIUrl":"10.1016/0003-4843(81)90007-3","url":null,"abstract":"","PeriodicalId":100093,"journal":{"name":"Annals of Mathematical Logic","volume":"20 3","pages":"Pages 289-330"},"PeriodicalIF":0.0,"publicationDate":"1981-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0003-4843(81)90007-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87671932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
On non-minimal p-points over a measurable cardinal 在可测量基数上的非极小p点上
Annals of Mathematical Logic Pub Date : 1981-08-01 DOI: 10.1016/0003-4843(81)90006-1
Moti Gitik
{"title":"On non-minimal p-points over a measurable cardinal","authors":"Moti Gitik","doi":"10.1016/0003-4843(81)90006-1","DOIUrl":"10.1016/0003-4843(81)90006-1","url":null,"abstract":"<div><p>Answering a question of Ketonen we build a non-minimal p-point in a generic extension of <em>L</em>[<em>U</em>]. A non-minimal RF-minimal <em>Q-</em>point is built too. Some other constructions related to these are investigated.</p></div>","PeriodicalId":100093,"journal":{"name":"Annals of Mathematical Logic","volume":"20 3","pages":"Pages 269-288"},"PeriodicalIF":0.0,"publicationDate":"1981-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0003-4843(81)90006-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76099588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Trees, subtrees and order types 树、子树和顺序类型
Annals of Mathematical Logic Pub Date : 1981-08-01 DOI: 10.1016/0003-4843(81)90005-X
Stevo B. Todorčević
{"title":"Trees, subtrees and order types","authors":"Stevo B. Todorčević","doi":"10.1016/0003-4843(81)90005-X","DOIUrl":"10.1016/0003-4843(81)90005-X","url":null,"abstract":"","PeriodicalId":100093,"journal":{"name":"Annals of Mathematical Logic","volume":"20 3","pages":"Pages 233-268"},"PeriodicalIF":0.0,"publicationDate":"1981-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0003-4843(81)90005-X","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88211431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 36
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信