2023 Intelligent Methods, Systems, and Applications最新文献

筛选
英文 中文
Evaluation of metric and representation learning approaches: Effects of representations driven by relative distance on the performance. 度量和表征学习方法的评估:相对距离驱动的表征对表现的影响。
2023 Intelligent Methods, Systems, and Applications Pub Date : 2023-07-01 Epub Date: 2023-08-24 DOI: 10.1109/imsa58542.2023.10217475
Anthony B Garza, Rolando Garcia, Marc S Halfon, Hani Z Girgis
{"title":"Evaluation of metric and representation learning approaches: Effects of representations driven by relative distance on the performance.","authors":"Anthony B Garza,&nbsp;Rolando Garcia,&nbsp;Marc S Halfon,&nbsp;Hani Z Girgis","doi":"10.1109/imsa58542.2023.10217475","DOIUrl":"https://doi.org/10.1109/imsa58542.2023.10217475","url":null,"abstract":"<p><p>Several deep neural network architectures have emerged recently for metric learning. We asked which architecture is the most effective in measuring the similarity or dissimilarity among images. To this end, we evaluated six networks on a standard image set. We evaluated variational autoencoders, Siamese networks, triplet networks, and variational auto-encoders combined with Siamese or triplet networks. These networks were compared to a baseline network consisting of multiple separable convolutional layers. Our study revealed the following: (i) the triplet architecture proved the most effective one due to learning a relative distance - not an absolute distance; (ii) combining auto-encoders with networks that learn metrics (e.g., Siamese or triplet networks) is unwarranted; and (iii) an architecture based on separable convolutional layers is a reasonable simple alternative to triplet networks. These results can potentially impact our field by encouraging architects to develop advanced networks that take advantage of separable convolution and relative distance.</p>","PeriodicalId":94364,"journal":{"name":"2023 Intelligent Methods, Systems, and Applications","volume":"2023 ","pages":"545-550"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10566582/pdf/nihms-1935619.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41226888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信