Journal of advanced research最新文献

筛选
英文 中文
Exploitation of enhanced prime editing for blocking aberrant angiogenesis. 利用增强素材编辑技术阻断异常血管生成。
Journal of advanced research Pub Date : 2024-07-10 DOI: 10.1016/j.jare.2024.07.006
Xionggao Huang, Wenyi Wu, Hui Qi, Xiaohe Yan, Lijun Dong, Yanhui Yang, Qing Zhang, Gaoen Ma, Guoming Zhang, Hetian Lei
{"title":"Exploitation of enhanced prime editing for blocking aberrant angiogenesis.","authors":"Xionggao Huang, Wenyi Wu, Hui Qi, Xiaohe Yan, Lijun Dong, Yanhui Yang, Qing Zhang, Gaoen Ma, Guoming Zhang, Hetian Lei","doi":"10.1016/j.jare.2024.07.006","DOIUrl":"10.1016/j.jare.2024.07.006","url":null,"abstract":"<p><strong>Introduction: </strong>Aberrant angiogenesis plays an important part in the development of a variety of human diseases including proliferative diabetic retinopathy, with which there are still numerous patients remaining a therapeutically challenging condition. Prime editing (PE) is a versatile gene editing approach, which offers a novel opportunity to genetically correct challenging disorders.</p><p><strong>Objectives: </strong>The goal of this study was to create a dominant-negative (DN) vascular endothelial growth factor receptor (VEGFR) 2 by editing genomic DNA with an advanced PE system to block aberrant retinal angiogenesis in a mouse model of oxygen-induced retinopathy.</p><p><strong>Methods: </strong>An advanced PE system (referred to as PE6x) was established within two lentiviral vectors, with one carrying an enhanced PE guide RNA and a canonical Cas9 nickase fused with an optimized reversal transcriptase, and the other conveying a nicking guide RNA and a DN-MLH1 to improve PE efficiency. Dual non-integrating lentiviruses (NILVs) produced with the two lentiviral PE6x vectors were then employed to create a mutation of VEGFR2 T17967A by editing the Mus musculus VEGFR2 locus in vitro and in vivo, leading to generation of a premature stop codon (TAG, K796stop) to produce DN-VEGFR2, to interfere with the wild type VEGFR2 which is essential for angiogenesis.</p><p><strong>Results: </strong>NILVs targeting VEGFR2 delivered into cultured murine vascular endothelial cells led to 51.06 % VEGFR2 T17967A in the genome analyzed by next generation sequencing and the production of DN-VEGFR2, which was found to hamper VEGF-induced VEGFR2 phosphorylation, as demonstrated by Western blot analysis. Intravitreally injection of the dual NILVs into postnatal day 12 mice in a model of oxygen-induced retinopathy, led to production of retinal DN-VEGFR2 in postnatal day 17 mice which blocked retinal VEGFR2 expression and activation as well as abnormal retinal angiogenesis without interfering with retinal structure and function, as assessed by electroretinography, optical coherence tomography, fundus fluorescein angiography and histology.</p><p><strong>Conclusion: </strong>DN-VEGFR2 resulted from editing genomic VEGFR2 using the PE6x system can be harnessed to treat intraocular pathological angiogenesis.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C-reactive protein orchestrates acute allograft rejection in vascularized composite allotransplantation via selective activation of monocyte subsets. C 反应蛋白通过亚群选择性单核细胞活化协调血管化复合异体移植中的急性异体移植排斥反应。
Journal of advanced research Pub Date : 2024-07-09 DOI: 10.1016/j.jare.2024.07.007
Jurij Kiefer, Johannes Zeller, Laura Schneider, Julia Thomé, James D McFadyen, Isabel A Hoerbrand, Friederike Lang, Emil Deiss, Balázs Bogner, Anna-Lena Schaefer, Nina Chevalier, Verena K Horner, Sheena Kreuzaler, Ulrich Kneser, Martin Kauke-Navarro, David Braig, Kevin J Woollard, Bohdan Pomahac, Karlheinz Peter, Steffen U Eisenhardt
{"title":"C-reactive protein orchestrates acute allograft rejection in vascularized composite allotransplantation via selective activation of monocyte subsets.","authors":"Jurij Kiefer, Johannes Zeller, Laura Schneider, Julia Thomé, James D McFadyen, Isabel A Hoerbrand, Friederike Lang, Emil Deiss, Balázs Bogner, Anna-Lena Schaefer, Nina Chevalier, Verena K Horner, Sheena Kreuzaler, Ulrich Kneser, Martin Kauke-Navarro, David Braig, Kevin J Woollard, Bohdan Pomahac, Karlheinz Peter, Steffen U Eisenhardt","doi":"10.1016/j.jare.2024.07.007","DOIUrl":"10.1016/j.jare.2024.07.007","url":null,"abstract":"<p><strong>Introduction: </strong>Despite advancements in transplant immunology and vascularized composite allotransplantation (VCA), the longevity of allografts remains hindered by the challenge of allograft rejection. The acute-phase response, an immune-inflammatory reaction to ischemia/reperfusion that occurs directly after allogeneic transplantation, serves as a catalyst for graft rejection. This immune response is orchestrated by acute-phase reactants through intricate crosstalk with the mononuclear phagocyte system.</p><p><strong>Objective: </strong>C-reactive protein (CRP), a well-known marker of inflammation, possesses pro-inflammatory properties and exacerbates ischemia/reperfusion injury. Thus, we investigated how CRP impacts acute allograft rejection.</p><p><strong>Methods: </strong>Prompted by clinical observations in facial VCAs, we employed a complex hindlimb transplantation model in rats to investigate the direct impact of CRP on transplant rejection.</p><p><strong>Results: </strong>Our findings demonstrate that CRP expedites allograft rejection and diminishes allograft survival by selectively activating non-classical monocytes. Therapeutic stabilization of CRP abrogates this activating effect on monocytes, thereby attenuating acute allograft rejection. Intravital imagining of graft-infiltrating, recipient-derived monocytes during the early phase of acute rejection corroborated their differential regulation by CRP and their pivotal role in driving the initial stages of graft rejection.</p><p><strong>Conclusion: </strong>The differential activation of recipient-derived monocytes by CRP exacerbates the innate immune response and accelerates clinical allograft rejection. Thus, therapeutic targeting of CRP represents a novel and promising strategy for preventing acute allograft rejection and potentially mitigating chronic allograft rejection.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141592380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
YAP/TAZ, beta-catenin, and TGFb pathway activation in medical plasma-induced wound healing in diabetic mice. 医用血浆诱导糖尿病小鼠伤口愈合过程中的 YAP/TAZ、β-catenin 和 TGFb 通路活化
Journal of advanced research Pub Date : 2024-07-08 DOI: 10.1016/j.jare.2024.07.004
Anke Schmidt, Thomas von Woedtke, Klaus-Dieter Weltmann, Sander Bekeschus
{"title":"YAP/TAZ, beta-catenin, and TGFb pathway activation in medical plasma-induced wound healing in diabetic mice.","authors":"Anke Schmidt, Thomas von Woedtke, Klaus-Dieter Weltmann, Sander Bekeschus","doi":"10.1016/j.jare.2024.07.004","DOIUrl":"10.1016/j.jare.2024.07.004","url":null,"abstract":"<p><strong>Introduction: </strong>Hippo is a signaling pathway that is evolutionarily conserved and plays critical roles in wound healing and tissue regeneration. Disruption of the transcriptional activity of both Hippo-associated factors, the yes-associated protein (YAP), and the transcriptional co-activator with PDZ binding motif (TAZ) has been associated with cardiovascular diseases, fibrosis, and cancer. This makes the Hippo pathway an appealing target for therapeutic interventions.</p><p><strong>Objectives: </strong>Prior research has indicated that medical gas plasma promotes wound healing by delivering a combination of reactive species directly to the affected areas. However, the involvement of YAP/TAZ and other signaling pathways in diabetic wound healing remains unexplored.</p><p><strong>Methods: </strong>To this extent, ear wounds were generated and treated with gas plasma in streptozotocin (STZ)-induced diabetic mice. Transcriptome profiling at two wound healing stages (days 9 and 20 post-wounding) was performed in female and male mice. Additionally, we employed gene and protein expression analyses, utilizing immunohistological and -chemical staining of various targets as well as quantitative PCR and Western blot analysis.</p><p><strong>Results: </strong>Gas plasma treatment accelerated healing by increasing re-epithelialization and modifying extracellular matrix components. Transcriptomic profiling charting the major alterations in gene expression following plasma treatment was followed by a validation of several targets using transcriptional and translational quantification as well as localization analyses.</p><p><strong>Conclusion: </strong>Our study evaluated the cellular regulation of essential targets of the Hippo and related pathways such as YAP/TAZ, β-catenin, tumor growth factor β, and oxidative stress signaling after plasma treatment. The activation of genes, pathways, and their regulators is an attractive therapeutic aim for a therapeutic intervention in dermal skin repair in diabetic diseases using medical gas plasmas.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reveal the mechanism of hepatic oxidative stress in mice induced by photo-oxidation milk using multi-omics analysis techniques. 利用多组学分析技术揭示光氧化牛奶诱导小鼠肝脏氧化应激的机制
Journal of advanced research Pub Date : 2024-07-08 DOI: 10.1016/j.jare.2024.07.005
Sijia Tan, Qiangqiang Li, Can Guo, Sumeng Chen, Afaf Kamal-Eldin, Gang Chen
{"title":"Reveal the mechanism of hepatic oxidative stress in mice induced by photo-oxidation milk using multi-omics analysis techniques.","authors":"Sijia Tan, Qiangqiang Li, Can Guo, Sumeng Chen, Afaf Kamal-Eldin, Gang Chen","doi":"10.1016/j.jare.2024.07.005","DOIUrl":"10.1016/j.jare.2024.07.005","url":null,"abstract":"<p><strong>Introduction: </strong>Photo-oxidation is recognized as a contributor to the deterioration of milk quality, posing potential safety hazards to human health. However, there has been limited investigation into the impact of consuming photo-oxidized milk on health.</p><p><strong>Objectives: </strong>This study employs multi-omics analysis techniques to elucidate the mechanisms by which photo-oxidized milk induces oxidative stress in the liver.</p><p><strong>Methods: </strong>Mouse model was used to determine the effect of the gavage administration of milk with varying degrees of photo-oxidation on the mouse liver. The damage degree was established by measuring serum markers indicative of oxidative stress, and with a subsequent histopathological examination of liver tissues. In addition, comprehensive metabolome, lipidome, and transcriptome analyses were conducted to elucidate the underlying molecular mechanisms of hepatic damage caused by photo-oxidized milk.</p><p><strong>Results: </strong>A significant elevation in the oxidative stress levels and the presence of hepatocellular swelling and inflammation subsequent to the gavage administration of photo-oxidized milk to mice. Significant alterations in the levels of metabolites such as lumichrome, all-trans-retinal, L-valine, phosphatidylglycerol, and phosphatidylcholine within the hepatic tissue of mice. Moreover, photo-oxidized milk exerted a pronounced detrimental impact on the glycerophospholipid metabolism of mice liver. The peroxisome proliferator-activated receptors (PPAR) signaling pathway enrichment appreciated in the animals that consumed photo-oxidized milk further supports the substantial negative influence of photo-oxidized milk on hepatic lipid metabolism. Gene set enrichment and interaction analyses revealed that photo-oxidized milk inhibited the cytochrome P450 pathway in mice, while also affecting other pathways associated with cellular stress response and lipid biosynthesis.</p><p><strong>Conclusion: </strong>This comprehensive study provides significant evidence regarding the potential health risks associated with photo-oxidized milk, particularly in terms of hepatic oxidative damage. It establishes a scientific foundation for assessing the safety of such milk and ensuring the quality of dairy products.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting MAD2B as a strategy for ischemic stroke therapy. 将 MAD2B 作为缺血性中风治疗的靶点。
Journal of advanced research Pub Date : 2024-07-05 DOI: 10.1016/j.jare.2024.07.003
Lijing Zhang, Hengzhen Cui, Wandi Hu, Xianfang Meng, Chun Zhang
{"title":"Targeting MAD2B as a strategy for ischemic stroke therapy.","authors":"Lijing Zhang, Hengzhen Cui, Wandi Hu, Xianfang Meng, Chun Zhang","doi":"10.1016/j.jare.2024.07.003","DOIUrl":"10.1016/j.jare.2024.07.003","url":null,"abstract":"<p><strong>Introduction: </strong>Post-stroke cognitive impairment is one of the major causes of disability due to cerebral ischemia. MAD2B is an inhibitor of Cdh1/APC, and loss of Cdh1/APC function in mature neurons increases ROCK2 activity, leading to changes in synaptic plasticity and memory loss in mouse neurons. Whether MAD2B regulates learning memory capacity through ROCK2 in cerebral ischemia is not known.</p><p><strong>Objectives: </strong>We investigated the role and mechanism of MAD2B in cerebral ischemia-induced cognitive dysfunction.</p><p><strong>Methods: </strong>The expression of MAD2B and its downstream related molecules was detected by immunoblotting and intervened with neuroprotectants after middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation/reoxygenation (OGD/R). We constructed MAD2B-cKO-specific knockout mice, knocked down and overexpressed MAD2B in mouse hippocampus by lentiviral injection in brain stereotaxis, modeled cerebral ischemia by using MCAO, and explored the role of MAD2B in post-stroke cognitive impairment (PSCI) by animal behaviors such as Y-maze and Novel object recognition test. Then the expression of MAD2B/ROCK2, downstream molecules and apoptosis-related molecules was detected. Finally, ROCK2 expression was intervened using its inhibitor and shRNA-ROCK2 lentivirus.</p><p><strong>Results: </strong>The expression of MAD2B and its downstream molecules increased after MCAO and OGD/R. Nonetheless, this expression underwent a decline post-therapy with neuroprotective agents. Deletion of MAD2B in the hippocampus ameliorated memory and learning deficits and improved motor coordination in MCAO mice. Conversely, the overexpression of MAD2B in the hippocampus exacerbated learning and memory deficits. Deletion of MAD2B resulted in the downregulation of ROCK2/LIMK1/cofilin. It effectively reduced ischemia-induced upregulation of BAX and cleaved caspase-3, which could be reversed by MAD2B overexpression. Inhibition or knockdown of ROCK2 expression in primary cultured neurons led to the downregulation of LIMK1/cofilin expression and reduced the expression of apoptosis-associated molecules induced by ischemia.</p><p><strong>Conclusions: </strong>Our findings suggest that MAD2B affects neuronal apoptosis via Rock2, which affects neurological function and cerebral infarction.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141556263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of gut microbiota, exosomes, and their interaction in the pathogenesis of ALD. 肠道微生物群、外泌体及其相互作用在 ALD 发病机制中的作用。
Journal of advanced research Pub Date : 2024-07-03 DOI: 10.1016/j.jare.2024.07.002
Zilu Cheng, Ling Yang, Huikuan Chu
{"title":"The role of gut microbiota, exosomes, and their interaction in the pathogenesis of ALD.","authors":"Zilu Cheng, Ling Yang, Huikuan Chu","doi":"10.1016/j.jare.2024.07.002","DOIUrl":"https://doi.org/10.1016/j.jare.2024.07.002","url":null,"abstract":"<p><strong>Background: </strong>The liver disorders caused by alcohol abuse are termed alcoholic-related liver disease (ALD), including alcoholic steatosis, alcoholic steatohepatitis alcoholic hepatitis, and alcoholic cirrhosis, posing a significant threat to human health. Currently, ALD pathogenesis has not been completely clarified, which is likely to be related to the direct damage caused by alcohol and its metabolic products, oxidative stress, gut dysbiosis, and exosomes.</p><p><strong>Aims: </strong>The existing studies suggest that both the gut microbiota and exosomes contribute to the development of ALD. Moreover, there exists an interaction between the gut microbiota and exosomes. We discuss whether this interaction plays a role in the pathogenesis of ALD and whether it can be a potential therapeutic target for ALD treatment.</p><p><strong>Key scientific concepts of review: </strong>Chronic alcohol intake alters the diversity and composition of gut microbiota, which greatly contributes to ALD's progression. Some approaches targeting the gut microbiota, including probiotics, fecal microbiota transplantation, and phage therapy, have been confirmed to effectively ameliorate ALD in many animal experiments and/or several clinical trials. In ALD, the levels of exosomes and the expression profile of microRNA have also changed, which affects the pathogenesis of ALD. Moreover, there is an interplay between exosomes and the gut microbiota, which also putatively acts as a pathogenic factor of ALD.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141539152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ginsenoside Rh4 inhibits colorectal cancer via the modulation of gut microbiota-mediated bile acid metabolism. 人参皂苷 Rh4 通过调节肠道微生物群介导的胆汁酸代谢抑制结直肠癌。
Journal of advanced research Pub Date : 2024-07-03 DOI: 10.1016/j.jare.2024.06.028
Xue Bai, Zhiguang Duan, Jianjun Deng, Zhuo Zhang, Rongzhan Fu, Chenhui Zhu, Daidi Fan
{"title":"Ginsenoside Rh4 inhibits colorectal cancer via the modulation of gut microbiota-mediated bile acid metabolism.","authors":"Xue Bai, Zhiguang Duan, Jianjun Deng, Zhuo Zhang, Rongzhan Fu, Chenhui Zhu, Daidi Fan","doi":"10.1016/j.jare.2024.06.028","DOIUrl":"10.1016/j.jare.2024.06.028","url":null,"abstract":"<p><strong>Introduction: </strong>Dysbiosis of the gut microbiota is emerging as a pivotal factor in the pathogenesis of colorectal cancer (CRC). Ginsenoside Rh4 (Rh4) is an active compound isolated from ginseng with beneficial effects in modulating intestinal inflammation and gut microbiota dysbiosis, but how Rh4 regulates the gut microbiota to alleviate CRC remains underexplored.</p><p><strong>Objectives: </strong>We investigated the impact of Rh4 on CRC and the mechanism of its action in inhibiting CRC via modulation of gut microbiota.</p><p><strong>Methods: </strong>We used the AOM/DSS model and employed transcriptomics, genomics and metabolomics techniques to explore the inhibitory impact of Rh4 on CRC. Furthermore, we employed experiments involving antibiotic treatment and fecal microbiota transplantation (FMT) to investigate the role of the gut microbiota. Finally, we elucidated the pivotal role of key functional bacteria and metabolites regulated by Rh4 in CRC.</p><p><strong>Results: </strong>Our research findings indicated that Rh4 repaired intestinal barrier damage caused by CRC, alleviated intestinal inflammation, and inhibited the development of CRC. Additionally, Rh4 inhibited CRC in a gut microbiota-dependent manner. Rh4 increased the diversity of gut microbiota, enriched the probiotic Akkermansia muciniphila (A. muciniphila), and alleviated gut microbiota dysbiosis caused by CRC. Subsequently, Rh4 regulated A. muciniphila-mediated bile acid metabolism. A. muciniphila promoted the production of UDCA by enhancing the activity of 7α-hydroxysteroid dehydrogenase (7α-HSDH). UDCA further activated FXR, modulated the TLR4-NF-κB signaling pathway, thus inhibiting the development of CRC.</p><p><strong>Conclusion: </strong>Our results confirm that Rh4 inhibits CRC in a gut microbiota-dependent manner by modulating gut microbiota-mediated bile acid metabolism and promoting the production of UDCA, which further activates the FXR receptor and regulates the TLR4-NF-κB signaling pathway. Our results confirm that Rh4 has the potential to be used as a modulator of gut microbiota for preventing and treatment of CRC.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141539150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regenerative endodontic therapy: From laboratory bench to clinical practice. 再生牙髓疗法:从实验室工作台到临床实践。
Journal of advanced research Pub Date : 2024-07-03 DOI: 10.1016/j.jare.2024.07.001
Xin Shi, Xiaohan Hu, Nan Jiang, Jing Mao
{"title":"Regenerative endodontic therapy: From laboratory bench to clinical practice.","authors":"Xin Shi, Xiaohan Hu, Nan Jiang, Jing Mao","doi":"10.1016/j.jare.2024.07.001","DOIUrl":"10.1016/j.jare.2024.07.001","url":null,"abstract":"<p><strong>Background: </strong>Maintaining the vitality and functionality of dental pulp is paramount for tooth integrity, longevity, and homeostasis. Aiming to treat irreversible pulpitis and necrosis, there has been a paradigm shift from conventional root canal treatment towards regenerative endodontic therapy.</p><p><strong>Aim of review: </strong>This extensive and multipart review presents crucial laboratory and practical issues related to pulp-dentin complex regeneration aimed towards advancing clinical translation of regenerative endodontic therapy and enhancing human life quality.</p><p><strong>Key scientific concepts of review: </strong>In this multipart review paper, we first present a panorama of emerging potential tissue engineering strategies for pulp-dentin complex regeneration from cell transplantation and cell homing perspectives, emphasizing the critical regenerative components of stem cells, biomaterials, and conducive microenvironments. Then, this review provides details about current clinically practiced pulp regenerative/reparative approaches, including direct pulp capping and root revascularization, with a specific focus on the remaining hurdles and bright prospects in developing such therapies. Next, special attention was devoted to discussing the innovative biomimetic perspectives opened in establishing functional tissues by employing exosomes and cell aggregates, which will benefit the clinical translation of dental pulp engineering protocols. Finally, we summarize careful consideration that should be given to basic research and clinical applications of regenerative endodontics. In particular, this review article highlights significant challenges associated with residual infection and inflammation and identifies future insightful directions in creating antibacterial and immunomodulatory microenvironments so that clinicians and researchers can comprehensively understand crucial clinical aspects of regenerative endodontic procedures.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141539151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-diabetic effect of dicaffeoylquinic acids is associated with the modulation of gut microbiota and bile acid metabolism. 二咖啡酰奎宁酸的抗糖尿病作用与肠道微生物群和胆汁酸代谢的调节有关。
Journal of advanced research Pub Date : 2024-07-03 DOI: 10.1016/j.jare.2024.06.027
Yujie Huang, Weiqi Xu, Wei Dong, Guijie Chen, Yi Sun, Xiaoxiong Zeng
{"title":"Anti-diabetic effect of dicaffeoylquinic acids is associated with the modulation of gut microbiota and bile acid metabolism.","authors":"Yujie Huang, Weiqi Xu, Wei Dong, Guijie Chen, Yi Sun, Xiaoxiong Zeng","doi":"10.1016/j.jare.2024.06.027","DOIUrl":"10.1016/j.jare.2024.06.027","url":null,"abstract":"<p><strong>Introduction: </strong>The human gut microbiome plays a pivotal role in health and disease, notably through its interaction with bile acids (BAs). BAs, synthesized in the liver, undergo transformation by the gut microbiota upon excretion into the intestine, thus influencing host metabolism. However, the potential mechanisms of dicaffeoylquinic acids (DiCQAs) from Ilex kudingcha how to modulate lipid metabolism and inflammation via gut microbiota remain unclear.</p><p><strong>Objectives and methods: </strong>The objectives of the present study were to investigate the regulating effects of DiCQAs on diabetes and the potential mechanisms of action. Two mice models were utilized to investigate the anti-diabetic effects of DiCQAs. Additionally, analysis of gut microbiota structure and functions was conducted concurrently with the examination of DiCQAs' impact on gut microbiota carrying the bile salt hydrolase (BSH) gene, as well as on the enterohepatic circulation of BAs and related signaling pathways.</p><p><strong>Results: </strong>Our findings demonstrated that DiCQAs alleviated diabetic symptoms by modulating gut microbiota carrying the BSH gene. This modulation enhanced intestinal barrier integrity, increased enterohepatic circulation of conjugated BAs, and inhibited the farnesoid X receptor-fibroblast growth factor 15 (FGF15) signaling axis in the ileum. Consequently, the protein expression of hepatic FGFR4 fibroblast growth factor receptor 4 (FGFR4) decreased, accompanied by heightened BA synthesis, reduced hepatic BA stasis, and lowered levels of hepatic and plasma cholesterol. Furthermore, DiCQAs upregulated glucolipid metabolism-related proteins in the liver and muscle, including v-akt murine thymoma viral oncogene homolog (AKT)/glycogen synthase kinase 3-beta (GSK3β) and AMP-activated protein kinase (AMPK), thereby ameliorating hyperglycemia and mitigating inflammation through the down-regulation of the MAPK signaling pathway in the diabetic group.</p><p><strong>Conclusion: </strong>Our study elucidated the anti-diabetic effects and mechanism of DiCQAs from I. kudingcha, highlighting the potential of targeting gut microbiota, particularly Acetatifactor sp011959105 and Acetatifactor muris carrying the BSH gene, as a therapeutic strategy to attenuate FXR-FGF15 signaling and ameliorate diabetes.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141539138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
E3 ubiquitin ligase RNF128 attenuates colitis and colorectal tumorigenesis by triggering the degradation of IL-6 receptors. E3 泛素连接酶 RNF128 通过触发 IL-6 受体的降解来减轻结肠炎和结直肠肿瘤的发生。
Journal of advanced research Pub Date : 2024-07-02 DOI: 10.1016/j.jare.2024.06.025
Tian-Sheng He, Kuntai Cai, Weiling Lai, Jingge Yu, Furong Qing, Ao Shen, Lina Sui, Wenji He, Weihua Wang, Qiuxiang Xiao, Xiong Lei, Tianfu Guo, Zhiping Liu
{"title":"E3 ubiquitin ligase RNF128 attenuates colitis and colorectal tumorigenesis by triggering the degradation of IL-6 receptors.","authors":"Tian-Sheng He, Kuntai Cai, Weiling Lai, Jingge Yu, Furong Qing, Ao Shen, Lina Sui, Wenji He, Weihua Wang, Qiuxiang Xiao, Xiong Lei, Tianfu Guo, Zhiping Liu","doi":"10.1016/j.jare.2024.06.025","DOIUrl":"10.1016/j.jare.2024.06.025","url":null,"abstract":"<p><strong>Introduction: </strong>Intestinal immune dysregulation is strongly linked to the occurrence and formation of tumors. RING finger protein 128 (RNF128) has been identified to play distinct immunoregulatory functions in innate and adaptive systems. However, the physiological roles of RNF128 in intestinal inflammatory conditions such as colitis and colorectal cancer (CRC) remain controversial.</p><p><strong>Objectives: </strong>To elucidate the function and mechanism of RNF128 in colitis and CRC.</p><p><strong>Methods: </strong>Animal models of dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM)/DSS-induced CRC were established in WT and Rnf128-deficient mice and evaluated by histopathology. Co-immunoprecipitation and ubiquitination analyses were employed to investigate the role of RNF128 in IL-6-STAT3 signaling.</p><p><strong>Results: </strong>RNF128 was significantly downregulated in clinical CRC tissues compared with paired peritumoral tissues. Rnf128-deficient mice were hypersusceptible to both colitis induced by DSS and CRC induced by AOM/DSS or APC mutation. Loss of RNF128 promoted the proliferation of CRC cells and STAT3 activation during the early transformative stage of carcinogenesis in vivo and in vitro when stimulated by IL-6. Mechanistically, RNF128 interacted with the IL-6 receptor α subunit (IL-6Rα) and membrane glycoprotein gp130 and mediated their lysosomal degradation in ligase activity-dependent manner. Through a series of point mutations in the IL-6 receptor, we identified that RNF128 promoted K48-linked polyubiquitination of IL-6Rα at K398/K401 and gp130 at K718/K816/K866. Additionally, blocking STAT3 activation effectively eradicated the inflammatory damage of Rnf128-deficient mice during the transformative stage of carcinogenesis.</p><p><strong>Conclusion: </strong>RNF128 attenuates colitis and colorectal tumorigenesis by inhibiting IL-6-STAT3 signaling, which sheds novel insights into the modulation of IL-6 receptors and the inflammation-to-cancer transition.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141536224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信