Deep generative models, and data augmentation, labelling, and imperfections : first workshop, DGM4MICCAI 2021, and first workshop, DALI 2021, held in conjunction with MICCAI 2021, Strasbourg, France, October 1, 2021, proceedings最新文献

筛选
英文 中文
Deep Generative Models: Second MICCAI Workshop, DGM4MICCAI 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings 深度生成模型:第二届MICCAI研讨会,DGM4MICCAI 2022,与MICCAI 2022一起举行,新加坡,2022年9月22日,会议录
M. Xiong
{"title":"Deep Generative Models: Second MICCAI Workshop, DGM4MICCAI 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings","authors":"M. Xiong","doi":"10.1007/978-3-031-18576-2","DOIUrl":"https://doi.org/10.1007/978-3-031-18576-2","url":null,"abstract":"","PeriodicalId":93538,"journal":{"name":"Deep generative models, and data augmentation, labelling, and imperfections : first workshop, DGM4MICCAI 2021, and first workshop, DALI 2021, held in conjunction with MICCAI 2021, Strasbourg, France, October 1, 2021, proceedings","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85112066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated Iterative Label Transfer Improves Segmentation of Noisy Cells in Adaptive Optics Retinal Images. 自动迭代标签转移改进了自适应光学视网膜图像中噪声细胞的分割。
Jianfei Liu, Nancy Aguilera, Tao Liu, Johnny Tam
{"title":"Automated Iterative Label Transfer Improves Segmentation of Noisy Cells in Adaptive Optics Retinal Images.","authors":"Jianfei Liu, Nancy Aguilera, Tao Liu, Johnny Tam","doi":"10.1007/978-3-030-88210-5_19","DOIUrl":"10.1007/978-3-030-88210-5_19","url":null,"abstract":"<p><p>High quality data labeling is essential for improving the accuracy of deep learning applications in medical imaging. However, noisy images are not only under-represented in training datasets, but also, labeling of noisy data is low quality. Unfortunately, noisy images with poor quality labels are exacerbated by traditional data augmentation strategies. Real world images contain noise and can lead to unexpected drops in algorithm performance. In this paper, we present a non-traditional, purposeful data augmentation method to specifically transfer high quality automated labels into noisy image regions for incorporation into the training dataset. The overall approach is based on the use of paired images of the same cells in which variable image noise results in cell segmentation failures. Iteratively updating the cell segmentation model with accurate labels of noisy image areas resulted in an improvement in Dice coefficient from 77% to 86%. This was achieved by adding only 3.4% more cells to the training dataset, showing that local label transfer through graph matching is an effective augmentation strategy to improve segmentation.</p>","PeriodicalId":93538,"journal":{"name":"Deep generative models, and data augmentation, labelling, and imperfections : first workshop, DGM4MICCAI 2021, and first workshop, DALI 2021, held in conjunction with MICCAI 2021, Strasbourg, France, October 1, 2021, proceedings","volume":"23 1","pages":"201-208"},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033000/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77354244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Generative Models, and Data Augmentation, Labelling, and Imperfections: First Workshop, DGM4MICCAI 2021, and First Workshop, DALI 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, October 1, 2021, Proceedings 深度生成模型,数据增强,标记和缺陷:第一次研讨会,DGM4MICCAI 2021,和第一次研讨会,DALI 2021,与MICCAI 2021一起举行,斯特拉斯堡,法国,2021年10月1日,论文集
{"title":"Deep Generative Models, and Data Augmentation, Labelling, and Imperfections: First Workshop, DGM4MICCAI 2021, and First Workshop, DALI 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, October 1, 2021, Proceedings","authors":"","doi":"10.1007/978-3-030-88210-5","DOIUrl":"https://doi.org/10.1007/978-3-030-88210-5","url":null,"abstract":"","PeriodicalId":93538,"journal":{"name":"Deep generative models, and data augmentation, labelling, and imperfections : first workshop, DGM4MICCAI 2021, and first workshop, DALI 2021, held in conjunction with MICCAI 2021, Strasbourg, France, October 1, 2021, proceedings","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86853467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信