International library of diabetes & metabolism最新文献

筛选
英文 中文
Protective Effect of Topiramate on Hyperglycemia-Induced Cerebral Oxidative Stress, Pericyte Loss and Learning Behavior in Diabetic Mice. 托吡酯对高血糖诱导的糖尿病小鼠脑氧化应激、周细胞损失和学习行为的保护作用。
Tulin O Price, Susan A Farr, Michael L Niehoff, Nuran Ercal, John E Morley, Gul N Shah
{"title":"Protective Effect of Topiramate on Hyperglycemia-Induced Cerebral Oxidative Stress, Pericyte Loss and Learning Behavior in Diabetic Mice.","authors":"Tulin O Price,&nbsp;Susan A Farr,&nbsp;Michael L Niehoff,&nbsp;Nuran Ercal,&nbsp;John E Morley,&nbsp;Gul N Shah","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Diabetes mellitus-associated damage to the microvasculature of the brain is caused by hyperglycemia-induced oxidative stress, which results in pericyte loss, blood-brain barrier disruption, and impaired cognitive function. Oxidative stress, in diabetes, is caused by reactive oxygen species produced during accelerated respiration (mitochondrial oxidative metabolism of glucose). The rate of respiration is regulated by mitochondrial carbonic anhydrases (CAs). Inhibition of these enzymes protects the brain from diabetic damage. Previously, we reported that topiramate, a mitochondrial CA inhibitor, at a dose of 50 mg/kg/day protects the brain in diabetes by reducing oxidative stress and restoring pericyte numbers. Topiramate has high affinity for both mitochondrial CAs; therefore, it is conceivable that a much lower dose may inhibit these enzymes and thus protect the brain from hyperglycemia-induced oxidative damage. Therefore, in an effort to reduce the toxicity associated with higher doses of topiramate, the current study was designed to investigate the effect of 1.0 mg/kg topiramate on reducing oxidative stress, restoring pericyte numbers in the brain, and improving the impaired learning behavior in diabetic mouse. Diabetes was induced by a one-time injection of streptozotocin and topiramate was administered daily for 12 weeks. Levels of oxidative stress, reduced glutathione (GSH) and 4-hydroxy-2-trans-nonenal (HNE) were measured in the brain and pericyte/endothelial cell ratios in isolated brain microvessels. Learning behavior was assessed by T-maze foot shock avoidance test. A significant decrease in GSH (control, 12.2 ± 0.4 vs. diabetic, 10.8 ± 0.4 vs. diabetic + topiramate, 12.6 ± 0.6, p<0.05) and an increase in HNE (control, 100 ± 4.2, vs. diabetic, 127.3 ± 8.8 vs. diabetic + topiramate, 93.9 ± 8.4 p<0.05) in diabetic mice were corrected by topiramate treatment. Topiramate treatment also resulted in restoration of pericyte numbers in diabetic mice (control, 25.89 ± 0.85 vs. diabetic, 18.14 ± 0.66 vs. diabetic + topiramate, 24.35 ± 0.53, p<0.001) and improvement in learning behavior. In conclusion, these data clearly demonstrate that topiramate at 1.0 mg/kg protects the mouse brain from diabetic damage. A 1.0 mg/kg topiramate in the mouse translates to a 5.0 mg daily dose in a 60 kg human, which may help slow the onset and progression of diabetic complications in the human brain.</p>","PeriodicalId":90873,"journal":{"name":"International library of diabetes & metabolism","volume":"1 1","pages":"6-12"},"PeriodicalIF":0.0,"publicationDate":"2015-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479302/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33308224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信