Martin A C Manoukian, Susanne V Ott, Jayakumar Rajadas, Mohammed Inayathullah
{"title":"Polymeric Nanoparticles to Combat Squamous Cell Carcinomas in Patients with Dystrophic Epidermolysis Bullosa.","authors":"Martin A C Manoukian, Susanne V Ott, Jayakumar Rajadas, Mohammed Inayathullah","doi":"10.2174/1877912304666140708184013","DOIUrl":"https://doi.org/10.2174/1877912304666140708184013","url":null,"abstract":"<p><p>Skin cancer is the leading cause of malignancy in the United States, with Basal Cell Carcinoma, Squamous Cell Carcinoma , and Melanoma being the three most common diagnoses, respectively. Squamous Cell Carcinoma (SCC) is a particular concern for patients suffering from Dystrophic Epidermolysis Bullosa (DEB), a disease that affects the production and function of collagen VII, a protein that forms the anchoring fibrils which bind the epidermis to the dermis. Patients with DEB suffer from chronic blistering and wounds that have impaired healing capabilities, often leading to the development of SCC and eventual mortality. Nanomedicine is playing an increasing role in the delivery of effective therapeutics to combat a wide range of diseases, including the imaging and treatment of SCC. In this review, we discuss the role of nanoparticles in the treatment of SCC with an emphasis on PLGA nanoparticles and SCCs found in patients suffering from DEB, and address recent patents that are pertinent to the development of novel nanomedical therapeutics.</p>","PeriodicalId":90042,"journal":{"name":"Recent patents on nanomedicine","volume":"4 1","pages":"15-24"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1877912304666140708184013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32907296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Applications of Semiconductor Fabrication Methods to Nanomedicine: A Review of Recent Inventions and Techniques.","authors":"Achanta Rajasekhar, Barjor Gimi, Walter Hu","doi":"10.2174/1877912311303010003","DOIUrl":"https://doi.org/10.2174/1877912311303010003","url":null,"abstract":"<p><p>We live in a world of convergence where scientific techniques from a variety of seemingly disparate fields are being applied cohesively to the study and solution of biomedical problems. For instance, the semiconductor processing field has been primarily developed to cater to the needs of the ever decreasing transistor size and cost while increasing functionality of electronic circuits. In recent years, pioneers in this field have equipped themselves with a powerful understanding of how the same techniques can be applied in the biomedical field to develop new and efficient systems for the diagnosis, analysis and treatment of various conditions in the human body. In this paper, we review the major inventions and experimental methods which have been developed for nano/micro fluidic channels, nanoparticles fabricated by top-down methods, and in-vivo nanoporous microcages for effective drug delivery. This paper focuses on the information contained in patents as well as the corresponding technical publications. The goal of the paper is to help emerging scientists understand and improvise over these inventions.</p>","PeriodicalId":90042,"journal":{"name":"Recent patents on nanomedicine","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2013-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1877912311303010003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31932997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kishore Cholkar, Ashaben Patel, Aswani Dutt Vadlapudi, Ashim K Mitra
{"title":"Novel Nanomicellar Formulation Approaches for Anterior and Posterior Segment Ocular Drug Delivery.","authors":"Kishore Cholkar, Ashaben Patel, Aswani Dutt Vadlapudi, Ashim K Mitra","doi":"10.2174/1877912311202020082","DOIUrl":"https://doi.org/10.2174/1877912311202020082","url":null,"abstract":"<p><p>One of the most challenging areas of pharmaceutical research is ocular drug delivery. The unique anatomy and physiology of the eye impedes drug permeation to deeper ocular tissues. Nanosized carrier systems such as nanoparticles, liposomes, suspensions, dendrimers, and nanomicelles are being explored for ocular drug delivery. In this review, we have focused on application of emerging nanomicellar carrier systems in ocular drug delivery. Nanomicelles are nanosized vesicular carriers formed from amphiphilic monomer units. Surfactant and polymeric micellar nanocarriers provide an amenable means to improve drug solubilization, develop clear aqueous formulations and deliver drugs to anterior and posterior ocular tissues. Nanomicelles due to their amphiphilic nature encapsulate hydrophobic drugs and aid in drug delivery. Various methods are employed to develop nanosized micellar formulations depending upon the physicochemical properties of the drug. Nanomicellar carriers appear to be promising vehicles with potential applications in ocular drug delivery. In this review, we attempted to discuss about the progress in ocular drug delivery research using nanomicelles as carriers from the published literature and issued patents. Also, with regards to ocular static and dynamic barriers which prevent drug permeation, a brief discussion about nanomicelles, types of nanomicelles, their methods of preparation and micellar strategy to overcome ocular barriers, delivering therapeutic levels of drugs to anterior and posterior ocular tissues are discussed.</p>","PeriodicalId":90042,"journal":{"name":"Recent patents on nanomedicine","volume":"2 2","pages":"82-95"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4232191/pdf/nihms638961.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32816738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multilanthanide Systems for Medical Imaging Applications.","authors":"Jeremiah D Moore, Matthew J Allen","doi":"10.2174/1877912311101020088","DOIUrl":"10.2174/1877912311101020088","url":null,"abstract":"<p><p>Molecules containing multiple lanthanide ions have unique potential in applications for medical imaging including the areas of magnetic resonance imaging (MRI) and fluoresence imaging. The study of multilanthanide complexes as contrast agents for MRI and as biologically responsive fluorescent probes has resulted in an improved understanding of the structural characteristics that govern the behavior of these complexes. This review will survey the last five years of progress in multinuclear lanthanide complexes with a specific focus on the structural parameters that impact potential medical imaging applications. The patents cited in this review are from the last five years and describe contrast agents that contain multiple lanthanide ions.</p>","PeriodicalId":90042,"journal":{"name":"Recent patents on nanomedicine","volume":"1 2","pages":"88-100"},"PeriodicalIF":0.0,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3610183/pdf/nihms336773.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40237549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}