{"title":"Predictive Modeling and Integrative Physiology: The Physiome Projects.","authors":"James B Bassingthwaighte","doi":"10.2174/1876536X01003010066","DOIUrl":"https://doi.org/10.2174/1876536X01003010066","url":null,"abstract":"<p><p>The fundamental paradigm in physiological research is integration. Biological researchers are now ready to define for a species a mathematical construct, the Physiome, the all-encompassing quantitative model of an organism. The goal of the human Physiome project is improved health care, through deep understanding of the organism, all the way down to the genes, reconciling contradictions and clarifying cause and effect. The strategies for accomplishing this long term aim include the systematic gathering of old and new knowledge into shared databases, and integrating the information into self consistent, reproducible, mathematical models. Multiscale models, for practicality, cover only a few levels at a time. Beginning at the middle level, the cell, where the knowledge base is largest and most secure, and the elements well defined as functional biophysical/biochemical modules, the plan is to work up to the organism level and down to the gene level, in the end providing clear linkages between phenotype and the genome.</p>","PeriodicalId":89506,"journal":{"name":"The open pacing, electrophysiology & therapy journal","volume":"3 ","pages":"66-74"},"PeriodicalIF":0.0,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3423967/pdf/nihms387604.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30857355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas Heldt, Ramakrishna Mukkamala, George B Moody, Roger G Mark
{"title":"CVSim: An Open-Source Cardiovascular Simulator for Teaching and Research.","authors":"Thomas Heldt, Ramakrishna Mukkamala, George B Moody, Roger G Mark","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>CVSim is a lumped-parameter model of the human cardiovascular system that has been developed and used for research and for teaching quantitative physiology courses at MIT and Harvard Medical School since 1984. We present a brief historical background of lumped-parameter cardiovascular system models, followed by an overview of the development of the major versions of CVSim over a 25-year period in our laboratory. We describe the features and differences of four versions of CVSim that are freely available in open-source form via PhysioNet (http://physionet.org). These include a six-compartment cardiovascular model with an arterial baroreflex system, implemented in C for efficiency, with an X-based graphical user interface; a six-compartment model with a more extensive short-term regulatory system and incorporating resting physiologic perturbations, available as a stand-alone MATLAB application; and a pair of elaborated versions consisting of 6- and 21-compartment computational models implemented in C, with a separate and enhanced Java graphical user interface. We conclude with a discussion of the educational and research applications for which we have used CVSim.</p>","PeriodicalId":89506,"journal":{"name":"The open pacing, electrophysiology & therapy journal","volume":"3 ","pages":"45-54"},"PeriodicalIF":0.0,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3178445/pdf/nihms299693.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30024296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Review of Fetal ECG Signal Processing; Issues and Promising Directions.","authors":"Reza Sameni, Gari D Clifford","doi":"10.2174/1876536X01003010004","DOIUrl":"10.2174/1876536X01003010004","url":null,"abstract":"<p><p>The field of electrocardiography has been in existence for over a century, yet despite significant advances in adult clinical electrocardiography, signal processing techniques and fast digital processors, the analysis of fetal ECGs is still in its infancy. This is, partly due to a lack of availability of gold standard databases, partly due to the relatively low signal-to-noise ratio of the fetal ECG compared to the maternal ECG (caused by the various media between the fetal heart and the measuring electrodes, and the fact that the fetal heart is simply smaller), and in part, due to the less complete clinical knowledge concerning fetal cardiac function and development. In this paper we review a range of promising recording and signal processing techniques for fetal ECG analysis that have been developed over the last forty years, and discuss both their shortcomings and advantages. Before doing so, however, we review fetal cardiac development, and the etiology of the fetal ECG. A selection of relevant models for the fetal/maternal ECG mixture is also discussed. In light of current understanding of the fetal ECG, we then attempt to justify recommendations for promising future directions in signal processing, and database creation.</p>","PeriodicalId":89506,"journal":{"name":"The open pacing, electrophysiology & therapy journal","volume":" ","pages":"4-20"},"PeriodicalIF":0.0,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100207/pdf/nihms225849.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40111140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}