Neurology (Chicago, Ill.)最新文献

筛选
英文 中文
Electromagnetic Field Stimulation Therapy for Alzheimer's Disease. 治疗阿尔茨海默病的电磁场刺激疗法。
Neurology (Chicago, Ill.) Pub Date : 2024-01-01 Epub Date: 2024-01-05
Felipe P Perez, Jorge Morisaki, Haitham Kanakri, Maher Rizkalla
{"title":"Electromagnetic Field Stimulation Therapy for Alzheimer's Disease.","authors":"Felipe P Perez, Jorge Morisaki, Haitham Kanakri, Maher Rizkalla","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the most common neurodegenerative dementia worldwide. AD is a multifactorial disease that causes a progressive decline in memory and function precipitated by toxic beta-amyloid (Aβ) proteins, a key player in AD pathology. In 2022, 6.5 million Americans lived with AD, costing the nation $321billion. The standard of care for AD treatment includes acetylcholinesterase inhibitors (AchEIs), NMDA receptor antagonists, and monoclonal antibodies (mAbs). However, these methods are either: 1) ineffective in improving cognition, 2) unable to change disease progression, 3) limited in the number of therapeutic targets, 4) prone to cause severe side effects (brain swelling, microhemorrhages with mAb, and bradycardia and syncope with AchEIs), 5) unable to effectively cross the blood-brain barrier, and 6) lack of understanding of the aging process on the disease. mAbs are available to lower Aβ, but the difficulties of reducing the levels of the toxic Aβ proteins in the brain without triggering brain swelling or microhemorrhages associated with mAbs make the risk-benefit profile of mAbs unclear. A novel multitarget, effective, and safe non-invasive approach utilizing Repeated Electromagnetic Field Stimulation (REMFS) lowers Aβ levels in human neurons and memory areas, prevents neuronal death, stops disease progression, and improves memory without causing brain edema or bleeds in AD mice. This REMFS treatment has not been developed for humans because current EMF devices have poor penetration depth and inhomogeneous E-field distribution in the brain. Here, we discussed the biology of these effects in neurons and the design of optimal devices to treat AD.</p>","PeriodicalId":74280,"journal":{"name":"Neurology (Chicago, Ill.)","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11064876/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140862907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetics of Neurotrauma. 神经创伤的表观遗传学
Neurology (Chicago, Ill.) Pub Date : 2022-01-01
A Dagra, A Barpujari, S Z Bauer, B O Olowofela, S Mohamed, K McGrath, C Robinson, S Robicsek, A Snyder, B Lucke-Wold
{"title":"Epigenetics of Neurotrauma.","authors":"A Dagra, A Barpujari, S Z Bauer, B O Olowofela, S Mohamed, K McGrath, C Robinson, S Robicsek, A Snyder, B Lucke-Wold","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Epigenetic changes have been linked to a host of disease states. Besides the physiological function of epigenetic changes in regulating cellular function, recent data indicates that key changes in epigenetic activity also play an important pathophysiologic role following neurotrauma specifically. Such manifestations occur through the activation or silencing of different genes. Histone methylation has emerged as a critical component of this process and can be selectively modulated after injury. Pre-clinical studies have resulted in key discoveries regarding specific methylation sites of interest. This focused review highlights some of these early findings and their relationship to clinical outcomes. These findings suggest areas of future investigation and discovery in the quest to develop ideal biomarkers and methods to utilize them in developing therapeutic interventions.</p>","PeriodicalId":74280,"journal":{"name":"Neurology (Chicago, Ill.)","volume":"2 2","pages":"42-47"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10361119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信