Discover data最新文献

筛选
英文 中文
The measurement errors of google trends data 谷歌趋势数据的测量误差
Discover data Pub Date : 2024-06-13 DOI: 10.1007/s44248-024-00013-3
Kerry Liu
{"title":"The measurement errors of google trends data","authors":"Kerry Liu","doi":"10.1007/s44248-024-00013-3","DOIUrl":"https://doi.org/10.1007/s44248-024-00013-3","url":null,"abstract":"","PeriodicalId":72824,"journal":{"name":"Discover data","volume":"40 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141350132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Benchmarking of Secure Group Communication schemes with focus on IoT 以物联网为重点的安全群组通信方案基准测试
Discover data Pub Date : 2024-05-23 DOI: 10.1007/s44248-024-00010-6
Thomas Prantl, André Bauer, Simon Engel, Lukas Horn, Christian Krupitzer, Lukas Iffländer, Samuel Kounev
{"title":"Benchmarking of Secure Group Communication schemes with focus on IoT","authors":"Thomas Prantl, André Bauer, Simon Engel, Lukas Horn, Christian Krupitzer, Lukas Iffländer, Samuel Kounev","doi":"10.1007/s44248-024-00010-6","DOIUrl":"https://doi.org/10.1007/s44248-024-00010-6","url":null,"abstract":"","PeriodicalId":72824,"journal":{"name":"Discover data","volume":"8 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141105153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TFPsocialmedia: a public dataset for studying Turkish foreign policy TFPsocialmedia:研究土耳其外交政策的公共数据集
Discover data Pub Date : 2024-04-02 DOI: 10.1007/s44248-024-00009-z
Hakan Mehmetcik, M. Ganiz, Melih Koluk, Galip Yüksel, Muslim Yılmaz, Muhammed Mustafa İnce, Emre Tortumlu
{"title":"TFPsocialmedia: a public dataset for studying Turkish foreign policy","authors":"Hakan Mehmetcik, M. Ganiz, Melih Koluk, Galip Yüksel, Muslim Yılmaz, Muhammed Mustafa İnce, Emre Tortumlu","doi":"10.1007/s44248-024-00009-z","DOIUrl":"https://doi.org/10.1007/s44248-024-00009-z","url":null,"abstract":"","PeriodicalId":72824,"journal":{"name":"Discover data","volume":"27 27","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140753206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data sharing and exchanging with incentive and optimization: a survey 通过激励和优化实现数据共享和交换:一项调查
Discover data Pub Date : 2024-03-18 DOI: 10.1007/s44248-024-00006-2
Liyuan Liu, Meng Han
{"title":"Data sharing and exchanging with incentive and optimization: a survey","authors":"Liyuan Liu, Meng Han","doi":"10.1007/s44248-024-00006-2","DOIUrl":"https://doi.org/10.1007/s44248-024-00006-2","url":null,"abstract":"","PeriodicalId":72824,"journal":{"name":"Discover data","volume":"60 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140234195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Canadian agriculture technology adoption 加拿大农业技术采用情况
Discover data Pub Date : 2024-03-12 DOI: 10.1007/s44248-024-00008-0
Tahmid Huq Easher, Rickard Enstroem, Terry Griffin, Tomas Nilsson
{"title":"Canadian agriculture technology adoption","authors":"Tahmid Huq Easher, Rickard Enstroem, Terry Griffin, Tomas Nilsson","doi":"10.1007/s44248-024-00008-0","DOIUrl":"https://doi.org/10.1007/s44248-024-00008-0","url":null,"abstract":"","PeriodicalId":72824,"journal":{"name":"Discover data","volume":"29 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140248636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An evaluation of NERC learning-based approaches to discover personal data in Brazilian Portuguese documents 评估基于 NERC 学习的在巴西葡萄牙语文件中发现个人数据的方法
Discover data Pub Date : 2023-11-30 DOI: 10.1007/s44248-023-00005-9
Luciano Ignaczak, Márcio Garcia Martins, C. A. da Costa, Bruna Donida, Maria Cristina Peres da Silva
{"title":"An evaluation of NERC learning-based approaches to discover personal data in Brazilian Portuguese documents","authors":"Luciano Ignaczak, Márcio Garcia Martins, C. A. da Costa, Bruna Donida, Maria Cristina Peres da Silva","doi":"10.1007/s44248-023-00005-9","DOIUrl":"https://doi.org/10.1007/s44248-023-00005-9","url":null,"abstract":"","PeriodicalId":72824,"journal":{"name":"Discover data","volume":"93 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139206571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Challenges and approaches when realizing online surface inspection systems with deep learning algorithms 利用深度学习算法实现在线表面检测系统的挑战和方法
Discover data Pub Date : 2023-03-30 DOI: 10.1007/s44248-023-00004-w
Henrike Stephani, Thomas Weibel, Ronald Rösch, A. Moghiseh
{"title":"Challenges and approaches when realizing online surface inspection systems with deep learning algorithms","authors":"Henrike Stephani, Thomas Weibel, Ronald Rösch, A. Moghiseh","doi":"10.1007/s44248-023-00004-w","DOIUrl":"https://doi.org/10.1007/s44248-023-00004-w","url":null,"abstract":"","PeriodicalId":72824,"journal":{"name":"Discover data","volume":"123 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83507933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A systematic literature review of cyber-security data repositories and performance assessment metrics for semi-supervised learning. 对网络安全数据存储库和半监督学习绩效评估指标的系统文献综述。
Discover data Pub Date : 2023-01-01 DOI: 10.1007/s44248-023-00003-x
Paul K Mvula, Paula Branco, Guy-Vincent Jourdan, Herna L Viktor
{"title":"A systematic literature review of cyber-security data repositories and performance assessment metrics for semi-supervised learning.","authors":"Paul K Mvula,&nbsp;Paula Branco,&nbsp;Guy-Vincent Jourdan,&nbsp;Herna L Viktor","doi":"10.1007/s44248-023-00003-x","DOIUrl":"https://doi.org/10.1007/s44248-023-00003-x","url":null,"abstract":"<p><p>In Machine Learning, the datasets used to build models are one of the main factors limiting what these models can achieve and how good their predictive performance is. Machine Learning applications for cyber-security or computer security are numerous including cyber threat mitigation and security infrastructure enhancement through pattern recognition, real-time attack detection, and in-depth penetration testing. Therefore, for these applications in particular, the datasets used to build the models must be carefully thought to be representative of real-world data. However, because of the scarcity of labelled data and the cost of manually labelling positive examples, there is a growing corpus of literature utilizing Semi-Supervised Learning with cyber-security data repositories. In this work, we provide a comprehensive overview of publicly available data repositories and datasets used for building computer security or cyber-security systems based on Semi-Supervised Learning, where only a few labels are necessary or available for building strong models. We highlight the strengths and limitations of the data repositories and sets and provide an analysis of the performance assessment metrics used to evaluate the built models. Finally, we discuss open challenges and provide future research directions for using cyber-security datasets and evaluating models built upon them.</p>","PeriodicalId":72824,"journal":{"name":"Discover data","volume":"1 1","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10079755/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9284026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Evaluating Word Embedding Feature Extraction Techniques for Host-Based Intrusion Detection Systems. 基于主机的入侵检测系统的词嵌入特征提取技术评价。
Discover data Pub Date : 2023-01-01 DOI: 10.1007/s44248-023-00002-y
Paul K Mvula, Paula Branco, Guy-Vincent Jourdan, Herna L Viktor
{"title":"Evaluating Word Embedding Feature Extraction Techniques for Host-Based Intrusion Detection Systems.","authors":"Paul K Mvula,&nbsp;Paula Branco,&nbsp;Guy-Vincent Jourdan,&nbsp;Herna L Viktor","doi":"10.1007/s44248-023-00002-y","DOIUrl":"https://doi.org/10.1007/s44248-023-00002-y","url":null,"abstract":"<p><p>Research into Intrusion and Anomaly Detectors at the Host level typically pays much attention to extracting attributes from system call traces. These include window-based, Hidden Markov Models, and sequence-model-based attributes. Recently, several works have been focusing on sequence-model-based feature extractors, specifically Word2Vec and GloVe, to extract embeddings from the system call traces due to their ability to capture semantic relationships among system calls. However, due to the nature of the data, these extractors introduce inconsistencies in the extracted features, causing the Machine Learning models built on them to yield inaccurate and potentially misleading results. In this paper, we first highlight the research challenges posed by these extractors. Then, we conduct experiments with new feature sets assessing their suitability to address the detected issues. Our experiments show that Word2Vec is prone to introducing more duplicated samples than GloVe. Regarding the solutions proposed, we found that concatenating the embedding vectors generated by Word2Vec and GloVe yields the overall best balanced accuracy. In addition to resolving the challenge of data leakage, this approach enables an improvement in performance relative to other alternatives.</p>","PeriodicalId":72824,"journal":{"name":"Discover data","volume":"1 1","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077957/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9274107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Analysing and visualising bike-sharing demand with outliers 用异常值分析和可视化共享单车需求
Discover data Pub Date : 2022-04-12 DOI: 10.1007/s44248-023-00001-z
Nicola Rennie, Catherine Cleophas, A. Sykulski, Florian Dost
{"title":"Analysing and visualising bike-sharing demand with outliers","authors":"Nicola Rennie, Catherine Cleophas, A. Sykulski, Florian Dost","doi":"10.1007/s44248-023-00001-z","DOIUrl":"https://doi.org/10.1007/s44248-023-00001-z","url":null,"abstract":"","PeriodicalId":72824,"journal":{"name":"Discover data","volume":"65 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74597455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信