Journal of Materials Science. Materials in engineering最新文献

筛选
英文 中文
Effect of Sc and Zr microalloying on recrystallization behavior of 1xxx aluminum heat exchanger alloys during post-deformation annealing. Sc和Zr微合金化对1xxx铝换热合金变形后退火再结晶行为的影响
Journal of Materials Science. Materials in engineering Pub Date : 2025-01-01 Epub Date: 2025-06-23 DOI: 10.1186/s40712-025-00307-7
Alyaa Bakr, Paul Rometsch, X-Grant Chen
{"title":"Effect of Sc and Zr microalloying on recrystallization behavior of 1xxx aluminum heat exchanger alloys during post-deformation annealing.","authors":"Alyaa Bakr, Paul Rometsch, X-Grant Chen","doi":"10.1186/s40712-025-00307-7","DOIUrl":"https://doi.org/10.1186/s40712-025-00307-7","url":null,"abstract":"<p><p>1xxx-series aluminum alloys are widely utilized in heat exchangers. During brazing, heat exchanger components are exposed to a short period of high temperature, which may trigger recrystallization and abnormal grain growth, ultimately compromising their mechanical properties. This study investigates the impact of Sc and Zr microalloying on the microstructure stability of hot deformed 1xxx alloys subjected to post-deformation annealing from 500 to 575 °C for 1 h to simulate brazing-type processes. Four alloys were studied: namely 1xxx base, Al-0.07Sc, Al-0.07Sc-0.10Zr and Al-0.19Sc-0.15Zr alloys. Annealing at 500 °C led to complete recrystallization in the base alloy, while higher annealing temperatures promoted abnormal grain growth. The Al-0.07Sc alloy resisted recrystallization at 500 °C but was fully recrystallized by 550 °C. In contrast, the Al-0.07Sc-0.10Zr alloy retained its grain stability up to 550 °C owing to the presence of stable Al<sub>3</sub>(Sc,Zr) precipitates; however, partial recrystallization occurred at 575 °C. The Al-0.19Sc-0.15Zr alloy preserved most of deformed microstructure even after annealing at 575 °C. It showed the highest recrystallization resistance among the four alloys studied owing to its highest number density and finest size of Al<sub>3</sub>(Sc,Zr) precipitates, which suggests that this alloy can be applied in even more extreme conditions including brazing temperatures above 575 °C.</p>","PeriodicalId":520909,"journal":{"name":"Journal of Materials Science. Materials in engineering","volume":"20 1","pages":"84"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12185563/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144500362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信