AI in precision oncology最新文献

筛选
英文 中文
Artificial Intelligence (AI)-Based Computer-Assisted Detection and Diagnosis for Mammography: An Evidence-Based Review of Food and Drug Administration (FDA)-Cleared Tools for Screening Digital Breast Tomosynthesis (DBT). 基于人工智能(AI)的乳腺x线摄影计算机辅助检测和诊断:美国食品和药物管理局(FDA)批准的数字乳腺断层合成(DBT)筛查工具的循证综述。
AI in precision oncology Pub Date : 2024-08-19 eCollection Date: 2024-08-01 DOI: 10.1089/aipo.2024.0022
Leslie R Lamb, Constance D Lehman, Synho Do, Kyungsu Kim, Saul Langarica, Manisha Bahl
{"title":"Artificial Intelligence (AI)-Based Computer-Assisted Detection and Diagnosis for Mammography: An Evidence-Based Review of Food and Drug Administration (FDA)-Cleared Tools for Screening Digital Breast Tomosynthesis (DBT).","authors":"Leslie R Lamb, Constance D Lehman, Synho Do, Kyungsu Kim, Saul Langarica, Manisha Bahl","doi":"10.1089/aipo.2024.0022","DOIUrl":"10.1089/aipo.2024.0022","url":null,"abstract":"<p><p>In recent years, the emergence of new-generation deep learning-based artificial intelligence (AI) tools has reignited enthusiasm about the potential of computer-assisted detection (CADe) and diagnosis (CADx) for screening mammography. For screening mammography, digital breast tomosynthesis (DBT) combined with acquired digital 2D mammography or synthetic 2D mammography is widely used throughout the United States. As of this writing in July 2024, there are six Food and Drug Administration (FDA)-cleared AI-based CADe/x tools for DBT. These tools detect suspicious lesions on DBT and provide corresponding scores at the lesion and examination levels that reflect likelihood of malignancy. In this article, we review the evidence supporting the use of AI-based CADe/x for DBT. The published literature on this topic consists of multireader, multicase studies, retrospective analyses, and two \"real-world\" evaluations. These studies suggest that AI-based CADe/x could lead to improvements in sensitivity without compromising specificity and to improvements in efficiency. However, the overall published evidence is limited and includes only two small postimplementation clinical studies. Prospective studies and careful postimplementation clinical evaluation will be necessary to fully understand the impact of AI-based CADe/x on screening DBT outcomes.</p>","PeriodicalId":520494,"journal":{"name":"AI in precision oncology","volume":"1 4","pages":"195-206"},"PeriodicalIF":0.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963389/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143782350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信