Sergey V Kutsaev, Ronald Agustsson, Salime Boucher, Paul Carriere, Nasr Ghoniem, Kenichi Kaneta, Maksim Kravchenko, Alan Li, Adam Moro, Sohun Patel, Ke Sheng
{"title":"Feasibility study of high-power electron linac for clinical X-ray ROAD-FLASH therapy system.","authors":"Sergey V Kutsaev, Ronald Agustsson, Salime Boucher, Paul Carriere, Nasr Ghoniem, Kenichi Kaneta, Maksim Kravchenko, Alan Li, Adam Moro, Sohun Patel, Ke Sheng","doi":"10.3389/fmede.2024.1382025","DOIUrl":"10.3389/fmede.2024.1382025","url":null,"abstract":"<p><strong>Introduction: </strong>This study examines how a practical source of X-ray radiation, capable of delivering unprecedented X-ray of 100 Gy/s at 1 m for X-ray FLASH radiotherapy can be designed.</p><p><strong>Methods: </strong>We proposed the design of a linac, capable of accelerating 18 MeV 8 mA electron beam with further conversion to bremsstrahlung X-rays. The design is based on L-band traveling wave accelerating structures with high power efficiency, operating in a short-burst/long-pulse regime that allows operating power supply in a regime, beyond its specifications.</p><p><strong>Results: </strong>This study demonstrates the feasibility of a high-power linac for a clinical X-ray FLASH therapy system, using detailed analysis and simulations. Despite ~500x higher output than a standard clinical linac, the design utilizes available accelerator components for maximal practicality.</p><p><strong>Discussion: </strong>Recent studies have demonstrated that the FLASH effect that allows to effectively kill tumor cells while sparing normal tissue occurs when large dose rates (≥40 Gy/s) are delivered in less than 1 s. Photons are very attractive since modest energies of several MeV are needed, which can be achieved with compact and cost-efficient accelerators. However, since the efficiency of electron-to-photon conversion is only a few percent, the required beam intensity must be an order of magnitude higher than that state-of-the-art accelerators can provide. The proposed ROAD-FLASH accelerator layout allows achieving both the FLASH dose rate and superior dose conformity, comparing to the similar projects. The current paper focuses on providing a technical roadmap for building an economical and practical linear accelerator for ROAD X-ray FLASH delivery.</p>","PeriodicalId":520411,"journal":{"name":"Frontiers in medical engineering","volume":"2 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11805532/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143384936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}