Discover artificial intelligence最新文献

筛选
英文 中文
The effect of resampling techniques on the performances of machine learning clinical risk prediction models in the setting of severe class imbalance: development and internal validation in a retrospective cohort. 重采样技术对严重班级失衡情况下机器学习临床风险预测模型性能的影响:回顾性队列的发展和内部验证。
Discover artificial intelligence Pub Date : 2024-01-01 Epub Date: 2024-11-26 DOI: 10.1007/s44163-024-00199-0
Janny Xue Chen Ke, Arunachalam DhakshinaMurthy, Ronald B George, Paula Branco
{"title":"The effect of resampling techniques on the performances of machine learning clinical risk prediction models in the setting of severe class imbalance: development and internal validation in a retrospective cohort.","authors":"Janny Xue Chen Ke, Arunachalam DhakshinaMurthy, Ronald B George, Paula Branco","doi":"10.1007/s44163-024-00199-0","DOIUrl":"https://doi.org/10.1007/s44163-024-00199-0","url":null,"abstract":"<p><strong>Purpose: </strong>The availability of population datasets and machine learning techniques heralded a new era of sophisticated prediction models involving a large number of routinely collected variables. However, severe class imbalance in clinical datasets is a major challenge. The aim of this study is to investigate the impact of commonly-used resampling techniques in combination with commonly-used machine learning algorithms in a clinical dataset, to determine whether combination(s) of these approaches improve upon the original multivariable logistic regression with no resampling.</p><p><strong>Methods: </strong>We previously developed and internally validated a multivariable logistic regression 30-day mortality prediction model in 30,619 patients using preoperative and intraoperative features.Using the same dataset, we systematically evaluated and compared model performances after application of resampling techniques [random under-sampling, near miss under-sampling, random oversampling, and synthetic minority oversampling (SMOTE)] in combination with machine learning algorithms (logistic regression, elastic net, decision trees, random forest, and extreme gradient boosting).</p><p><strong>Results: </strong>We found that in the setting of severe class imbalance, the impact of resampling techniques on model performance varied by the machine learning algorithm and the evaluation metric. Existing resampling techniques did not meaningfully improve area under receiving operating curve (AUROC). The area under the precision recall curve (AUPRC) was only increased by random under-sampling and SMOTE for decision trees, and oversampling and SMOTE for extreme gradient boosting. Importantly, some combinations of algorithm and resampling technique decreased AUROC and AUPRC compared to no resampling.</p><p><strong>Conclusion: </strong>Existing resampling techniques had a variable impact on models, depending on the algorithms and the evaluation metrics. Future research is needed to improve predictive performances in the setting of severe class imbalance.</p>","PeriodicalId":520312,"journal":{"name":"Discover artificial intelligence","volume":"4 1","pages":"91"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610218/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142776258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信