Intelligent computing (Washington, D.C.)最新文献

筛选
英文 中文
Intelligent Beam Optimization for Light-Sheet Fluorescence Microscopy through Deep Learning. 通过深度学习实现光片荧光显微镜的智能光束优化
Intelligent computing (Washington, D.C.) Pub Date : 2024-01-01 Epub Date: 2024-07-04 DOI: 10.34133/icomputing.0095
Chen Li, Mani Ratnam Rai, Yuheng Cai, H Troy Ghashghaei, Alon Greenbaum
{"title":"Intelligent Beam Optimization for Light-Sheet Fluorescence Microscopy through Deep Learning.","authors":"Chen Li, Mani Ratnam Rai, Yuheng Cai, H Troy Ghashghaei, Alon Greenbaum","doi":"10.34133/icomputing.0095","DOIUrl":"10.34133/icomputing.0095","url":null,"abstract":"<p><p>Light-sheet fluorescence microscopy (LSFM) provides the benefit of optical sectioning coupled with rapid acquisition times, enabling high-resolution 3-dimensional imaging of large tissue-cleared samples. Inherent to LSFM, the quality of the imaging heavily relies on the characteristics of the illumination beam, which only illuminates a thin section of the sample. Therefore, substantial efforts are dedicated to identifying slender, nondiffracting beam profiles that yield uniform and high-contrast images. An ongoing debate concerns the identification of optimal illumination beams for different samples: Gaussian, Bessel, Airy patterns, and/or others. However, comparisons among different beam profiles are challenging as their optimization objectives are often different. Given that our large imaging datasets (approximately 0.5 TB of images per sample) are already analyzed using deep learning models, we envisioned a different approach to the problem by designing an illumination beam tailored to boost the performance of the deep learning model. We hypothesized that integrating the physical LSFM illumination model (after passing it through a variable phase mask) into the training of a cell detection network would achieve this goal. Here, we report that joint optimization continuously updates the phase mask and results in improved image quality for better cell detection. The efficacy of our method is demonstrated through both simulations and experiments that reveal substantial enhancements in imaging quality compared to the traditional Gaussian light sheet. We discuss how designing microscopy systems through a computational approach provides novel insights for advancing optical design that relies on deep learning models for the analysis of imaging datasets.</p>","PeriodicalId":520006,"journal":{"name":"Intelligent computing (Washington, D.C.)","volume":"3 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信