Neurons, behavior, data analysis, and theory最新文献

筛选
英文 中文
Characterizing the nonlinear structure of shared variability in cortical neuron populations using latent variable models. 利用潜在变量模型描述大脑皮层神经元群共享变异性的非线性结构。
Neurons, behavior, data analysis, and theory Pub Date : 2019-01-01 Epub Date: 2019-04-27
Matthew R Whiteway, Karolina Socha, Vincent Bonin, Daniel A Butts
{"title":"Characterizing the nonlinear structure of shared variability in cortical neuron populations using latent variable models.","authors":"Matthew R Whiteway, Karolina Socha, Vincent Bonin, Daniel A Butts","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Sensory neurons often have variable responses to repeated presentations of the same stimulus, which can significantly degrade the stimulus information contained in those responses. This information can in principle be preserved if variability is shared across many neurons, but depends on the structure of the shared variability and its relationship to sensory encoding at the population level. The structure of this shared variability in neural activity can be characterized by latent variable models, although they have thus far typically been used under restrictive mathematical assumptions, such as assuming linear transformations between the latent variables and neural activity. Here we introduce two nonlinear latent variable models for analyzing large-scale neural recordings. We first present a general nonlinear latent variable model that is agnostic to the stimulus tuning properties of the individual neurons, and is hence well suited for exploring neural populations whose tuning properties are not well characterized. This motivates a second class of model, the Generalized Affine Model, which simultaneously determines each neuron's stimulus selectivity and a set of latent variables that modulate these stimulus-driven responses both additively and multiplicatively. While these approaches can detect very general nonlinear relationships in shared neural variability, we find that neural activity recorded in anesthetized primary visual cortex (V1) is best described by a single additive and single multiplicative latent variable, i.e., an \"affine model\". In contrast, application of the same models to recordings in awake macaque prefrontal cortex discover more general nonlinearities to compactly describe the population response variability. These results thus demonstrate how nonlinear latent variable models can be used to describe population variability, and suggest that a range of methods is necessary to study different brain regions under different experimental conditions.</p>","PeriodicalId":519987,"journal":{"name":"Neurons, behavior, data analysis, and theory","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779168/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信