IEEE International Conference on Biometrics, Theory, Applications and Systems. IEEE Conference on Biometrics: Theory, Applications, and Systems最新文献

筛选
英文 中文
Meta-evaluation for 3D Face Reconstruction Via Synthetic Data. 通过合成数据进行 3D 人脸重建的元评估。
Evangelos Sariyanidi, Claudio Ferrari, Stefano Berretti, Robert T Schultz, Birkan Tunc
{"title":"Meta-evaluation for 3D Face Reconstruction Via Synthetic Data.","authors":"Evangelos Sariyanidi, Claudio Ferrari, Stefano Berretti, Robert T Schultz, Birkan Tunc","doi":"10.1109/ijcb57857.2023.10448898","DOIUrl":"10.1109/ijcb57857.2023.10448898","url":null,"abstract":"<p><p>The standard benchmark metric for 3D face reconstruction is the geometric error between reconstructed meshes and the ground truth. Nearly all recent reconstruction methods are validated on real ground truth scans, in which case one needs to establish point correspondence prior to error computation, which is typically done with the Chamfer (i.e., nearest neighbor) criterion. However, a simple yet fundamental question have not been asked: Is the Chamfer error an appropriate and fair benchmark metric for 3D face reconstruction? More generally, how can we determine which error estimator is a better benchmark metric? We present a meta-evaluation framework that uses synthetic data to evaluate the quality of a geometric error estimator as a benchmark metric for face reconstruction. Further, we use this framework to experimentally compare four geometric error estimators. Results show that the standard approach not only severely underestimates the error, but also does so inconsistently across reconstruction methods, to the point of even altering the ranking of the compared methods. Moreover, although non-rigid ICP leads to a metric with smaller estimation bias, it could still not correctly rank all compared reconstruction methods, and is significantly more time consuming than Chamfer. In sum, we show several issues present in the current benchmarking and propose a procedure using synthetic data to address these issues.</p>","PeriodicalId":519906,"journal":{"name":"IEEE International Conference on Biometrics, Theory, Applications and Systems. IEEE Conference on Biometrics: Theory, Applications, and Systems","volume":"2023 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086654/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140912740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信