Journal of Security in Computer Networks and Distributed Systems最新文献

筛选
英文 中文
Application of Distributed Graphs for Facilitation of Scalable Botnet Detection and Response 应用分布式图谱促进可扩展的僵尸网络检测和响应
Journal of Security in Computer Networks and Distributed Systems Pub Date : 2024-03-18 DOI: 10.46610/joscnds.2024.v01i01.002
Mangadevi Atti, Manas Kumar Yogi
{"title":"Application of Distributed Graphs for Facilitation of Scalable Botnet Detection and Response","authors":"Mangadevi Atti, Manas Kumar Yogi","doi":"10.46610/joscnds.2024.v01i01.002","DOIUrl":"https://doi.org/10.46610/joscnds.2024.v01i01.002","url":null,"abstract":"Botnets pose a significant threat to modern network environments, exploiting compromised devices to carry out malicious activities such as distributed denial-of-service attacks, spam campaigns, and data theft. Traditional centralized detection systems often struggle to handle the scale and complexity of botnet attacks, leading to delays in detection and response. In response to these challenges, this paper explores the application of distributed graphs for facilitating scalable botnet detection and response. Distributed graphs offer a promising approach for modelling and analyzing complex network structures, enabling efficient detection of botnet propagation patterns and anomalous behaviour across distributed computing environments. The paper presents an overview of distributed graph-based botnet detection systems, discussing their architecture, design considerations, and key concepts such as graph partitioning, vertex-centric computation, and message passing in distributed graph algorithms. Case studies illustrate the practical application of distributed graph-based botnet detection in diverse network environments, highlighting success stories, challenges encountered, and lessons learned from deploying distributed graph systems in production cybersecurity operations. Finally, the paper discusses challenges and open research questions in the field of distributed graph-based botnet detection, addressing issues such as graph partitioning strategies, fault tolerance, privacy-preserving techniques, and integration with other security tools. It proposes potential avenues for future research and development in scalable botnet detection using distributed graphs, emphasizing the importance of adaptive threat response, collaboration with industry partners, and continuous improvement in detection algorithms for enhancing cybersecurity resilience against botnet attacks.","PeriodicalId":517934,"journal":{"name":"Journal of Security in Computer Networks and Distributed Systems","volume":"38 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140283691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信