Jurnal ELTIKOMPub Date : 2024-02-02DOI: 10.31961/eltikom.v7i2.940
Sabaria Sabaria, Syahfrizal Tahcfulloh
{"title":"Range and Velocity Resolution of Linear- Frequency-Modulated Signals on Subarray-Mimo Radar","authors":"Sabaria Sabaria, Syahfrizal Tahcfulloh","doi":"10.31961/eltikom.v7i2.940","DOIUrl":"https://doi.org/10.31961/eltikom.v7i2.940","url":null,"abstract":"The most important radar system performance is determining the range-velocity of the detected target. This performance is obtained from processing an ambiguity-function (AF) between signals from target reflections and radar radiation signals. Selection of the appropriate waveform transmitted by the radar is a key factor in supporting high resolution radar performance in the AF. There are many waveforms that have been studied in radar systems, especially for multi-antenna radars, i.e., subarray-MIMO (SMIMO) radar which can form phased array (PA) and MIMO radars simultaneously, in the form of linear-frequency-modulated (LFM) signals. In this paper, we examine the use of LFM waveforms combined with SMIMO radar to produce plots of three-dimensional AF as a function of time delay and Doppler shift. The results of the comparison with the Hadamard signal determine the effectiveness of the observed AF performance on parameters such as magnitude, range-velocity resolution, peak sidelobe level ratio, and integrated sidelobe ratio by taking into account the factors of the number of Tx antennas on the PA radar and the number of Tx subarrays on the MIMO radar. The evaluation results of the SMIMO radar configuration (M = 6) with the number of Tx-Rx antenna elements the being 8 provide the best mainlobe magnitude, sidelobe magnitude, range resolution, velocity resolution, PSLR, and ISLR of AF LFM signals compared to conventional radars are 235.2dB, 7.54dB, 37.5m, 75km/s, 29.89dB, and 29.8dB, respectively. Meanwhile, the LFM signal is far superior to the Hadamard signal which has PSLR and ISLR 1.16dB and -3.36dB, respectively.","PeriodicalId":517210,"journal":{"name":"Jurnal ELTIKOM","volume":"48 3-4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139896505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prediksi Cepat Gangguan Jaringan Tegangan Menengah Menggunakan Metode Knowledge Growing System (KGS)","authors":"Ika Noer Syamsiana, Puspa Ayu Yohana Yohana, Indrazno Sirajuddin, Arwin Datumaya Wahyudi Sumari, Andhika Sulistio","doi":"10.31961/eltikom.v7i2.573","DOIUrl":"https://doi.org/10.31961/eltikom.v7i2.573","url":null,"abstract":"Semakin meningkatnya kebutuhan energi listrik di sektor rumah tangga hingga industri menyebabkan energi listrik menjadi salah satu kebutuhan yang sangat penting dalam kehidupan sehari hari, sehingga keandalan dalam pendistribusian energi listrik harus sangat diperhatikan. Adanya gangguan-gangguan yang terjadi karena beberapa factor gangguan dapat menyebabkan terganggunya keandalan pada supply listrik. Situasi seperti ini sering terjadi di unit Perusahan Listrik Negara (PLN) di wilayah Surabaya Selatan, hal inilah yang melatar belakangi penelitian ini dibuat salah satunya dengan memprediksi gangguan distribusi listrik yang bertujuan untuk menguji metode Knowledge Growing System (KGS) dalam memprediksi masalah gangguan listrik dengan cara mengenali pola gangguan yang terjadi di setiap bulannya yang kemudian di akumulasi menjadi pola gangguan pertahun. KGS adalah agen cerdas yang dapat menghasilkan pengetahuannya sendiri tentang fenomena yang diamati dan menggunakan pengetahuan yang dihasilkan untuk membuat prediksi. Dengan memiliki pengetahuan tentang 10 pola gangguan listrik di lokasi distribusi listrik, KGS telah mampu memprediksi bahwa gangguan yang paling mungkin terjadi karena gangguan belum ditemukan/gangguan sesaat di Gardu induk Rungkut, Waru, Wonorejo, Sukolilo dan Ngagel dengan rata rata terjadi gangguan sebesar 26,91 %. Dengan prediksi yang cepat, unit PLN dapat mengembangkan rencana yang tepat untuk mengatasi gangguan dan memulihkan pasokan listrik dengan cepat.","PeriodicalId":517210,"journal":{"name":"Jurnal ELTIKOM","volume":"444 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139894018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prediksi Cepat Gangguan Jaringan Tegangan Menengah Menggunakan Metode Knowledge Growing System (KGS)","authors":"Ika Noer Syamsiana, Puspa Ayu Yohana Yohana, Indrazno Sirajuddin, Arwin Datumaya Wahyudi Sumari, Andhika Sulistio","doi":"10.31961/eltikom.v7i2.573","DOIUrl":"https://doi.org/10.31961/eltikom.v7i2.573","url":null,"abstract":"Semakin meningkatnya kebutuhan energi listrik di sektor rumah tangga hingga industri menyebabkan energi listrik menjadi salah satu kebutuhan yang sangat penting dalam kehidupan sehari hari, sehingga keandalan dalam pendistribusian energi listrik harus sangat diperhatikan. Adanya gangguan-gangguan yang terjadi karena beberapa factor gangguan dapat menyebabkan terganggunya keandalan pada supply listrik. Situasi seperti ini sering terjadi di unit Perusahan Listrik Negara (PLN) di wilayah Surabaya Selatan, hal inilah yang melatar belakangi penelitian ini dibuat salah satunya dengan memprediksi gangguan distribusi listrik yang bertujuan untuk menguji metode Knowledge Growing System (KGS) dalam memprediksi masalah gangguan listrik dengan cara mengenali pola gangguan yang terjadi di setiap bulannya yang kemudian di akumulasi menjadi pola gangguan pertahun. KGS adalah agen cerdas yang dapat menghasilkan pengetahuannya sendiri tentang fenomena yang diamati dan menggunakan pengetahuan yang dihasilkan untuk membuat prediksi. Dengan memiliki pengetahuan tentang 10 pola gangguan listrik di lokasi distribusi listrik, KGS telah mampu memprediksi bahwa gangguan yang paling mungkin terjadi karena gangguan belum ditemukan/gangguan sesaat di Gardu induk Rungkut, Waru, Wonorejo, Sukolilo dan Ngagel dengan rata rata terjadi gangguan sebesar 26,91 %. Dengan prediksi yang cepat, unit PLN dapat mengembangkan rencana yang tepat untuk mengatasi gangguan dan memulihkan pasokan listrik dengan cepat.","PeriodicalId":517210,"journal":{"name":"Jurnal ELTIKOM","volume":"43 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139897369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}