Earth最新文献

筛选
英文 中文
Investigating Seismic Events along the Eurasian Plate between Greece and Turkey: 10 Years of Seismological Analysis and Implications 调查希腊和土耳其之间欧亚板块沿线的地震事件:10 年的地震分析和影响
Earth Pub Date : 2024-07-26 DOI: 10.3390/earth5030017
A. Moshou
{"title":"Investigating Seismic Events along the Eurasian Plate between Greece and Turkey: 10 Years of Seismological Analysis and Implications","authors":"A. Moshou","doi":"10.3390/earth5030017","DOIUrl":"https://doi.org/10.3390/earth5030017","url":null,"abstract":"The North Aegean Sea region in Greece is located at the convergence of the Eurasian, African, and Anatolian tectonic plates. The region experiences frequent seismicity ranging from moderate to large-magnitude earthquakes. Tectonic interactions and seismic events in this area have far-reaching implications for understanding the broader geological processes in the eastern Mediterranean region. This study aims to conduct a comprehensive investigation of the seismic activity of the North Aegean Sea region by employing advanced seismological techniques and data analyses. Data from onshore seismological networks were collected and analyzed to assess the characteristics of the earthquakes in the region. Seismicity patterns, focal mechanisms, and seismic moment calculations were performed to assess current seismic activity. The present study combined spatiotemporal analysis with the analysis of genesis mechanisms, and this resulted in more results than those of previous studies. Detailed analysis of the seismic data showed patterns in the occurrence of earthquakes over time, with periodic episodes of increased seismic activity compared to activities followed by quieter periods. Finally, this study proves that recent earthquakes in the study area (2017, 2020) highlight the complexity of seismicity as well as the consequences of strong earthquakes on people and buildings. Overall, these findings suggest that the North Aegean Sea is becoming increasingly seismically active and is a potential risk zone for adjacent regions.","PeriodicalId":515568,"journal":{"name":"Earth","volume":"37 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141798758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA Takes Over on the Control of the Morphology of the Composite Self-Organized Structures of Barium and Calcium Silica–Carbonate Biomorphs, Implications for Prebiotic Chemistry on Earth DNA 接管钡和硅钙-碳酸钙生物形态的复合自组织结构的形态控制,对地球前生物化学的启示
Earth Pub Date : 2024-07-24 DOI: 10.3390/earth5030016
M. Cuéllar-Cruz, S. R. Islas, Abel Moreno
{"title":"DNA Takes Over on the Control of the Morphology of the Composite Self-Organized Structures of Barium and Calcium Silica–Carbonate Biomorphs, Implications for Prebiotic Chemistry on Earth","authors":"M. Cuéllar-Cruz, S. R. Islas, Abel Moreno","doi":"10.3390/earth5030016","DOIUrl":"https://doi.org/10.3390/earth5030016","url":null,"abstract":"The origin of life is associated with the existing environmental factors of the Precambrian Era of the Earth. The minerals rich in sodium silicates, in aluminum and in other chemical elements, such as kaolinite, were among the factors present at that time. Kaolinite is an abundant mineral on our planet, which indicates that it possibly had an essential role in the origin of the first blocks that constructed life on Earth. Evidence of this is the cherts, which are rocks with a high concentration of silica that retain the vestiges of the most ancient life on our planet. There are also inorganic structures called biomorphs that are like the cherts of the Precambrian, which take on a morphology and crystalline structure depending on the chemical molecules that make up the reaction mixture. To evaluate the interaction of kaolinite with DNA, the objective of this work is to synthesize biomorphs in the presence of kaolinite and genomic DNA that comes from a prokaryote and a eukaryote microorganism. Our results show that the difference between the prokaryote DNA and the eukaryote DNA favors the morphology and the crystalline phase of the calcium silica–carbonate biomorphs, while in the case of the barium silica–carbonate biomorphs, the environmental factors participate directly in the morphology but not in the crystalline phase. Results show that when a mineral such as kaolinite is present in genomic DNA, it is precisely the DNA that controls both the morphology and the crystalline phase as well as the chemical composition of the structure. This fact is relevant as it shows that, independently of the morphology or the of size of the organism, it is the genomic DNA that controls all the chemical elements toward the most stable structure, therefore allowing the perpetuation, conservation and maintenance of life on our planet (since the origin of the genomic DNA in the Precambrian Era to the present day).","PeriodicalId":515568,"journal":{"name":"Earth","volume":"27 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141810236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integration of UH SUH, HEC-RAS, and GIS in Flood Mitigation with Flood Forecasting and Early Warning System for Gilireng Watershed, Indonesia 将 UH SUH、HEC-RAS 和 GIS 与印度尼西亚 Gilireng 流域的洪水预报和预警系统相结合,用于洪水减灾
Earth Pub Date : 2024-07-08 DOI: 10.3390/earth5030015
M. R. Mustamin, Farouk Maricar, R. Lopa, R. Karamma
{"title":"Integration of UH SUH, HEC-RAS, and GIS in Flood Mitigation with Flood Forecasting and Early Warning System for Gilireng Watershed, Indonesia","authors":"M. R. Mustamin, Farouk Maricar, R. Lopa, R. Karamma","doi":"10.3390/earth5030015","DOIUrl":"https://doi.org/10.3390/earth5030015","url":null,"abstract":"A flood forecasting and early warning system is critical for rivers that have a large flood potential, one of which is the Gilireng watershed, which floods every year and causes many losses in Wajo Regency, Indonesia. This research also introduces an integration model between UH SUH and HEC-RAS in flood impact analysis, as a reference for flood forecasting and early warning systems in anticipating the timing and occurrence of floods, as well as GIS in the spatial modeling of flood-prone areas. Broadly speaking, this research is divided into four stages, namely, a flood hydrological analysis using UH SUH, flood hydraulic tracing using a 2D HEC-RAS numerical model, the spatial modeling of flood-prone areas using GIS, and the preparation of flood forecasting and early warning systems. The results of the analysis of the flood forecasting and early warning systems obtained the flood travel time and critical time at the observation point, the total time required from the upstream observation point to level 3 at Gilireng Dam for 1 h 35 min, Mamminasae Bridge for 4 h 35 min, and Akkotengeng Bridge for 8 h 40 min. This is enough time for people living in flood-prone areas to evacuate to the 15 recommended evacuation centers.","PeriodicalId":515568,"journal":{"name":"Earth","volume":" 761","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141669249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Modelling of the Evapotranspiration Portion of the Water Footprint: A Global Sensitivity Analysis in the Brazilian Serra Gaúcha 水足迹蒸散部分的建模:巴西塞拉高查的全球敏感性分析
Earth Pub Date : 2024-04-20 DOI: 10.3390/earth5020007
Gustavo Mendes Platt, Vinícius Kuczynski Nunes, Paulo Roberto Martins, Ricardo Gonçalves de Faria Corrêa, Francisco Bruno Souza Oliveira
{"title":"The Modelling of the Evapotranspiration Portion of the Water Footprint: A Global Sensitivity Analysis in the Brazilian Serra Gaúcha","authors":"Gustavo Mendes Platt, Vinícius Kuczynski Nunes, Paulo Roberto Martins, Ricardo Gonçalves de Faria Corrêa, Francisco Bruno Souza Oliveira","doi":"10.3390/earth5020007","DOIUrl":"https://doi.org/10.3390/earth5020007","url":null,"abstract":"Water footprints have been widely used to illustrate the consumption of water in many situations, for instance, in products, processes, or regions of interest. In this work, we analyzed—using a sensitivity analysis approach—the effect of some variables in the calculation of the water footprint in the viticulture in the Brazilian Serra Gaúcha (the major producing region of Brazilian wine). The classical Penman–Monteith model for evapotransporation was considered, with uncertainties in some parameters (dead mulch covering a fraction of the vineyard, maximum temperatures for some months, the altitudes and latitudes of the site). A sensitivity analysis was conducted using the SAFE toolbox under Octave framework. The results indicated that the the portion of the water footprint corresponding to evapotranspiration is more sensitive to the values of the mulch-covered fraction and the altitude of the site in comparison with the latitude and the maximum temperatures.","PeriodicalId":515568,"journal":{"name":"Earth","volume":"109 37","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140679739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Projected Heat Waves in Ecuador under Climate Change: Insights from HadGEM-RegCM4 Coupled Model 气候变化下的厄瓜多尔热浪预测:HadGEM-RegCM4 耦合模型的启示
Earth Pub Date : 2024-03-14 DOI: 10.3390/earth5010005
Diego Portalanza, Carlos Ortega, Liliam Garzon, Melissa Bello, Cristian Felipe Zuluaga, Caroline Bresciani, Angelica Durigon, Simone Ferraz
{"title":"Projected Heat Waves in Ecuador under Climate Change: Insights from HadGEM-RegCM4 Coupled Model","authors":"Diego Portalanza, Carlos Ortega, Liliam Garzon, Melissa Bello, Cristian Felipe Zuluaga, Caroline Bresciani, Angelica Durigon, Simone Ferraz","doi":"10.3390/earth5010005","DOIUrl":"https://doi.org/10.3390/earth5010005","url":null,"abstract":"This study examines heat wave projections across Ecuador’s Coastal, Highlands, and Amazon regions for 1975–2004 and 2070–2099 under Representative Concentration Pathways (RCP) scenarios 2.6, 4.5, and 8.5. Employing dynamic downscaling, we identify significant increases in heatwave intensity and maximum air temperatures (Tmax), particularly under RCP 8.5, with the Coastal region facing the most severe impacts. A moderate positive correlation between Tmax and climate indices such as the Pacific Decadal Oscillation (PDO) and the Oceanic Niño Index (ONI) suggests regional climatic influences on heatwave trends. These findings highlight the critical need for integrated climate adaptation strategies in Ecuador, focusing on mitigating risks to health, agriculture, and ecosystems. Proposed measures include urban forestry initiatives and the promotion of cool surfaces, alongside enhancing public awareness and access to cooling resources. This research contributes to the understanding of climate change impacts in Latin America, underscoring the urgency of adopting targeted adaptation and resilience strategies against urban heat island effects in Ecuador’s urban centers.","PeriodicalId":515568,"journal":{"name":"Earth","volume":"14 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140243820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resilience of an Urban Coastal Ecosystem in the Caribbean: A Remote Sensing Approach in Western Puerto Rico 加勒比地区城市沿海生态系统的复原力:波多黎各西部的遥感方法
Earth Pub Date : 2024-02-10 DOI: 10.3390/earth5010004
Yadiel Noel Bonilla-Roman, S. F. Acuña-Guzman
{"title":"Resilience of an Urban Coastal Ecosystem in the Caribbean: A Remote Sensing Approach in Western Puerto Rico","authors":"Yadiel Noel Bonilla-Roman, S. F. Acuña-Guzman","doi":"10.3390/earth5010004","DOIUrl":"https://doi.org/10.3390/earth5010004","url":null,"abstract":"Utilization of remote sensing-derived meteorological data is a valuable alternative for tropical insular territories such as Puerto Rico (PR). The study of ecosystem resilience in insular territories is an underdeveloped area of investigation. Little research has focused on studying how an ecosystem in PR responds to and recovers from unique meteorological events (e.g., hurricanes). This work aims to investigate how an ecosystem in Western Puerto Rico responds to extreme climate events and fluctuations, with a specific focus on evaluating its innate resilience. The Antillean islands in the Caribbean and Atlantic are vulnerable to intense weather phenomena, such as hurricanes. Due to the distinct tropical conditions inherent to this region, and the ongoing urban development of coastal areas, their ecosystems are constantly affected. Key indicators, including gross primary production (GPP), normalized difference vegetation index (NDVI), actual evapotranspiration (ET), and land surface temperature (LST), are examined to comprehend the interplay between these factors within the context of the Culebrinas River Watershed (CRW) ecosystem over the past decade during the peak of hurricane season. Data processing and analyses were performed on datasets provided by Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat 8–9 OLI TRIS, supplemented by information sourced from Puerto Rico Water and Energy Balance (PRWEB)—a dataset derived from Geostationary Operational Environmental Satellite (GOES) data. The findings revealed a complex interrelationship among atmospheric events and anthropogenic activities within the CRW, a region prone to recurrent atmospheric disruptions. NDVI and ET values from 2015 to 2019 showed the ecosystem’s capacity to recover after a prolonged drought period (2015) and Hurricanes Irma and Maria (2017). In 2015, the NDVI average was 0.79; after Hurricanes Irma and Maria in 2017, the NDVI dropped to 0.6, while in 2019, it had already increased to 0.8. Similarly, average ET values went from 3.2339 kg/m2/day in 2017 to 2.6513 kg/m2/day in 2018. Meanwhile, by 2019, the average ET was estimated to be 3.8105 kg/m2/day. Data geoprocessing of LST, NDVI, GPP, and ET, coupled with correlation analyses, revealed positive correlations among ET, NDVI, and GPP. Our results showed that areas with little anthropogenic impact displayed a more rapid and resilient restoration of the ecosystem. The spatial distribution of vegetation and impervious surfaces further highlights that areas closer to mountains have shown higher resilience while urban coastal areas have faced greater challenges in recovering from atmospheric events, thus showing the importance of preserving native vegetation, particularly mangroves, for long-term ecosystem stability. This study contributes to a deeper understanding of the dynamic interactions within urban coastal ecosystems in insular territories, emphasizing their resilience in the context of both natural atmospher","PeriodicalId":515568,"journal":{"name":"Earth","volume":" 444","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139787286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resilience of an Urban Coastal Ecosystem in the Caribbean: A Remote Sensing Approach in Western Puerto Rico 加勒比地区城市沿海生态系统的复原力:波多黎各西部的遥感方法
Earth Pub Date : 2024-02-10 DOI: 10.3390/earth5010004
Yadiel Noel Bonilla-Roman, S. F. Acuña-Guzman
{"title":"Resilience of an Urban Coastal Ecosystem in the Caribbean: A Remote Sensing Approach in Western Puerto Rico","authors":"Yadiel Noel Bonilla-Roman, S. F. Acuña-Guzman","doi":"10.3390/earth5010004","DOIUrl":"https://doi.org/10.3390/earth5010004","url":null,"abstract":"Utilization of remote sensing-derived meteorological data is a valuable alternative for tropical insular territories such as Puerto Rico (PR). The study of ecosystem resilience in insular territories is an underdeveloped area of investigation. Little research has focused on studying how an ecosystem in PR responds to and recovers from unique meteorological events (e.g., hurricanes). This work aims to investigate how an ecosystem in Western Puerto Rico responds to extreme climate events and fluctuations, with a specific focus on evaluating its innate resilience. The Antillean islands in the Caribbean and Atlantic are vulnerable to intense weather phenomena, such as hurricanes. Due to the distinct tropical conditions inherent to this region, and the ongoing urban development of coastal areas, their ecosystems are constantly affected. Key indicators, including gross primary production (GPP), normalized difference vegetation index (NDVI), actual evapotranspiration (ET), and land surface temperature (LST), are examined to comprehend the interplay between these factors within the context of the Culebrinas River Watershed (CRW) ecosystem over the past decade during the peak of hurricane season. Data processing and analyses were performed on datasets provided by Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat 8–9 OLI TRIS, supplemented by information sourced from Puerto Rico Water and Energy Balance (PRWEB)—a dataset derived from Geostationary Operational Environmental Satellite (GOES) data. The findings revealed a complex interrelationship among atmospheric events and anthropogenic activities within the CRW, a region prone to recurrent atmospheric disruptions. NDVI and ET values from 2015 to 2019 showed the ecosystem’s capacity to recover after a prolonged drought period (2015) and Hurricanes Irma and Maria (2017). In 2015, the NDVI average was 0.79; after Hurricanes Irma and Maria in 2017, the NDVI dropped to 0.6, while in 2019, it had already increased to 0.8. Similarly, average ET values went from 3.2339 kg/m2/day in 2017 to 2.6513 kg/m2/day in 2018. Meanwhile, by 2019, the average ET was estimated to be 3.8105 kg/m2/day. Data geoprocessing of LST, NDVI, GPP, and ET, coupled with correlation analyses, revealed positive correlations among ET, NDVI, and GPP. Our results showed that areas with little anthropogenic impact displayed a more rapid and resilient restoration of the ecosystem. The spatial distribution of vegetation and impervious surfaces further highlights that areas closer to mountains have shown higher resilience while urban coastal areas have faced greater challenges in recovering from atmospheric events, thus showing the importance of preserving native vegetation, particularly mangroves, for long-term ecosystem stability. This study contributes to a deeper understanding of the dynamic interactions within urban coastal ecosystems in insular territories, emphasizing their resilience in the context of both natural atmospher","PeriodicalId":515568,"journal":{"name":"Earth","volume":"48 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139847022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing Post-Monsoon Seasonal Soil Loss over Un-Gauged Stations of the Dwarkeswar and Shilabati Rivers, West Bengal, India 评估印度西孟加拉邦 Dwarkeswar 河和 Shilabati 河无测站季风后土壤流失情况
Earth Pub Date : 2024-02-07 DOI: 10.3390/earth5010003
Ankita Mukherjee, Maya Kumari, Varun Narayan Mishra
{"title":"Assessing Post-Monsoon Seasonal Soil Loss over Un-Gauged Stations of the Dwarkeswar and Shilabati Rivers, West Bengal, India","authors":"Ankita Mukherjee, Maya Kumari, Varun Narayan Mishra","doi":"10.3390/earth5010003","DOIUrl":"https://doi.org/10.3390/earth5010003","url":null,"abstract":"This study employs the Soil and Water Assessment Tool (SWAT) model to evaluate soil loss within the Shilabati and Dwarkeswar River Basin of West Bengal, serving as a pilot investigation into soil erosion levels at ungauged stations during the post-monsoon season. Detailed data for temperature, precipitation, wind speed, solar radiation, and relative humidity for 2000–2022 were collected. A land use map, soil map, and slope map were prepared to execute the model. The model categorizes the watershed region into 19 sub-basins and 227 Hydrological Response Units (HRUs). A detailed study with regard to soil loss was carried out. A detailed examination of soil erosion patterns over four distinct time periods (2003–2007, 2007–2012, 2013–2017, and 2018–2022) indicated variability in soil loss severity across sub-basins. The years 2008–2012, characterized by lower precipitation, witnessed reduced soil erosion. Sub-basins 6, 16, 17, and 19 consistently faced substantial soil loss, while minimal erosion was observed in sub-basins 14 and 18. The absence of a definitive soil loss pattern highlights the region’s susceptibility to climatic variables. Reduced soil erosion from 2018 to 2022 is attributed to diminished precipitation and subsequent lower discharge levels. The study emphasizes the intricate relationship between climatic factors and soil erosion dynamics.","PeriodicalId":515568,"journal":{"name":"Earth","volume":"286 13","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139857349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing Post-Monsoon Seasonal Soil Loss over Un-Gauged Stations of the Dwarkeswar and Shilabati Rivers, West Bengal, India 评估印度西孟加拉邦 Dwarkeswar 河和 Shilabati 河无测站季风后土壤流失情况
Earth Pub Date : 2024-02-07 DOI: 10.3390/earth5010003
Ankita Mukherjee, Maya Kumari, Varun Narayan Mishra
{"title":"Assessing Post-Monsoon Seasonal Soil Loss over Un-Gauged Stations of the Dwarkeswar and Shilabati Rivers, West Bengal, India","authors":"Ankita Mukherjee, Maya Kumari, Varun Narayan Mishra","doi":"10.3390/earth5010003","DOIUrl":"https://doi.org/10.3390/earth5010003","url":null,"abstract":"This study employs the Soil and Water Assessment Tool (SWAT) model to evaluate soil loss within the Shilabati and Dwarkeswar River Basin of West Bengal, serving as a pilot investigation into soil erosion levels at ungauged stations during the post-monsoon season. Detailed data for temperature, precipitation, wind speed, solar radiation, and relative humidity for 2000–2022 were collected. A land use map, soil map, and slope map were prepared to execute the model. The model categorizes the watershed region into 19 sub-basins and 227 Hydrological Response Units (HRUs). A detailed study with regard to soil loss was carried out. A detailed examination of soil erosion patterns over four distinct time periods (2003–2007, 2007–2012, 2013–2017, and 2018–2022) indicated variability in soil loss severity across sub-basins. The years 2008–2012, characterized by lower precipitation, witnessed reduced soil erosion. Sub-basins 6, 16, 17, and 19 consistently faced substantial soil loss, while minimal erosion was observed in sub-basins 14 and 18. The absence of a definitive soil loss pattern highlights the region’s susceptibility to climatic variables. Reduced soil erosion from 2018 to 2022 is attributed to diminished precipitation and subsequent lower discharge levels. The study emphasizes the intricate relationship between climatic factors and soil erosion dynamics.","PeriodicalId":515568,"journal":{"name":"Earth","volume":"54 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139797759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing Groundwater Recharge in the Wabe River Catchment, Central Ethiopia, through a GIS-Based Distributed Water Balance Model 通过基于地理信息系统的分布式水平衡模型评估埃塞俄比亚中部瓦贝河流域的地下水补给情况
Earth Pub Date : 2024-01-19 DOI: 10.3390/earth5010002
Gideon Tadesse, Muralitharan Jothimani
{"title":"Assessing Groundwater Recharge in the Wabe River Catchment, Central Ethiopia, through a GIS-Based Distributed Water Balance Model","authors":"Gideon Tadesse, Muralitharan Jothimani","doi":"10.3390/earth5010002","DOIUrl":"https://doi.org/10.3390/earth5010002","url":null,"abstract":"The utilization of groundwater has emerged as an indispensable asset in facilitating economic advancement, preserving ecological integrity, and responding to the challenges posed by climate change, especially in regions characterized by aridity and semi-aridity. The sustainable management of water resources requires an assessment of the geographical and temporal patterns of groundwater recharge. The present study employed the GIS-based WetSpass-M model to model the water balance components by utilizing hydro-meteorological and biophysical data from the Wabe catchment, which spans an area of 1840 km2 in central Ethiopia, for a long time. The objective of this study was to assess the long-term average annual and seasonal groundwater recharge for the catchment area utilizing the WetSpass-M model. The input data were collected through remote sensing data and surveys in the field. The model was employed to gain insights into the process of groundwater recharge in a particular region and to facilitate effective management, prudent utilization, and sustainable planning of water resources in the long run. Water balance components were estimated using seasonal fluctuations in evapotranspiration, surface runoff, and groundwater recharge. The Wabe catchment’s summer, winter, and mean long-term yearly groundwater recharge were determined to be 125.5 mm, 78.98 mm, and 204.51 mm, respectively. The model indicates that summer seasons account for 86.5% of the mean annual precipitation, while winter seasons account for 13.5%. On the other hand, the groundwater system percolates 14.8% of the total annual rainfall (1374.26 mm). While evapotranspiration accounts for 51% of total precipitation and surface runoff accounts for 34.1%, the Wabe catchment’s mean annual evapotranspiration and surface runoff values are simulated at 701.11 mm and 485.58 mm, respectively. The findings suggest the use of the WetSpass-M model to precisely calculate the water balance components within the Wabe catchment.","PeriodicalId":515568,"journal":{"name":"Earth","volume":"42 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139613251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信