Akdeniz Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi最新文献

筛选
英文 中文
Comparative Analysis of Deep Learning Models for Silver Price Prediction: CNN, LSTM, GRU and Hybrid Approach 白银价格预测的深度学习模型比较分析:CNN、LSTM、GRU 和混合方法
Akdeniz Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi Pub Date : 2024-02-08 DOI: 10.25294/auiibfd.1404173
Yunus Emre Gür
{"title":"Comparative Analysis of Deep Learning Models for Silver Price Prediction: CNN, LSTM, GRU and Hybrid Approach","authors":"Yunus Emre Gür","doi":"10.25294/auiibfd.1404173","DOIUrl":"https://doi.org/10.25294/auiibfd.1404173","url":null,"abstract":"In this study, the performance of different deep learning algorithms to predict silver prices was evaluated. It was focused on the use of deep learning models such as CNN, LSTM, and GRU for the prediction process, as well as a new hybrid model based on combining these models. Each algorithm was trained on historical silver price data and compared its performance in price prediction using this data. This approach aims to achieve more comprehensive and accurate forecasts by combining the strengths of each model. It also makes a unique contribution to the literature in this area by addressing a specialized area such as the silver market, which is often neglected in financial forecasting. The study presents an innovative approach to financial forecasting and analysis methodologies, highlighting the advantages and potential of deep learning models for time-series data processing. The results compare the ability of these algorithms to analyze silver prices based on historical data only and to assess past trends. The study showed that these algorithms exhibit different performances in analyzing historical data. In conclusion, this study compared the performance of different deep learning algorithms for predicting silver prices based on historical data and found that the CNN-LSTM-GRU hybrid model has the potential to make better predictions. These results can provide guidance to researchers working on financial analysis and forecasting.","PeriodicalId":513017,"journal":{"name":"Akdeniz Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi","volume":" 30","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139792996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Analysis of Deep Learning Models for Silver Price Prediction: CNN, LSTM, GRU and Hybrid Approach 白银价格预测的深度学习模型比较分析:CNN、LSTM、GRU 和混合方法
Akdeniz Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi Pub Date : 2024-02-08 DOI: 10.25294/auiibfd.1404173
Yunus Emre Gür
{"title":"Comparative Analysis of Deep Learning Models for Silver Price Prediction: CNN, LSTM, GRU and Hybrid Approach","authors":"Yunus Emre Gür","doi":"10.25294/auiibfd.1404173","DOIUrl":"https://doi.org/10.25294/auiibfd.1404173","url":null,"abstract":"In this study, the performance of different deep learning algorithms to predict silver prices was evaluated. It was focused on the use of deep learning models such as CNN, LSTM, and GRU for the prediction process, as well as a new hybrid model based on combining these models. Each algorithm was trained on historical silver price data and compared its performance in price prediction using this data. This approach aims to achieve more comprehensive and accurate forecasts by combining the strengths of each model. It also makes a unique contribution to the literature in this area by addressing a specialized area such as the silver market, which is often neglected in financial forecasting. The study presents an innovative approach to financial forecasting and analysis methodologies, highlighting the advantages and potential of deep learning models for time-series data processing. The results compare the ability of these algorithms to analyze silver prices based on historical data only and to assess past trends. The study showed that these algorithms exhibit different performances in analyzing historical data. In conclusion, this study compared the performance of different deep learning algorithms for predicting silver prices based on historical data and found that the CNN-LSTM-GRU hybrid model has the potential to make better predictions. These results can provide guidance to researchers working on financial analysis and forecasting.","PeriodicalId":513017,"journal":{"name":"Akdeniz Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi","volume":"125 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139852815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Support for a Religious System in Turkey: A World Values Survey Analysis 土耳其对宗教制度的支持:世界价值观调查分析
Akdeniz Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi Pub Date : 2024-01-18 DOI: 10.25294/auiibfd.1371753
Ezgi Elçi
{"title":"Support for a Religious System in Turkey: A World Values Survey Analysis","authors":"Ezgi Elçi","doi":"10.25294/auiibfd.1371753","DOIUrl":"https://doi.org/10.25294/auiibfd.1371753","url":null,"abstract":"Bu çalışma Türkiye’de dini bir yönetime hangi seçmen gruplarının destek verdiğini Dünya Değerler Araştırması verisi kullanarak incelemektedir. Cumhuriyetin ilk yıllarından beri dindar muhafazakârlar ve seküler gruplar arasındaki ayrışma bugün de hala devam etmektedir. İki grup arasındaki bu ayrışma daha önceden merkez-çevre teorisi ile açıklansa da yakın dönemde Türkiye siyasetinde yaşanan değişiklikler ile merkez ve çevre arasındaki ayırım bir kültür mücadelesine (kulturkampf) evirilmiştir. Çalışmamız, bu ayrışmanın temel aldığı değişkenler özelinde göstermektedir ki şehirde yaşayan, cinsiyet eşitliğine daha fazla destek veren veya Cumhuriyet Halk Partisi ile Millet İttifakını diğer partilere tercih eden katılımcılar dini yönetime daha az onay vermektedir. Bilime daha şüpheci yaklaşan, sol-sağ düzleminde kendini sağa yerleştiren veya Adalet ve Kalkınma Partisi ile Cumhur İttifakını diğer partilere tercih eden seçmenler ise dini yönetime daha fazla destek vermektedir.","PeriodicalId":513017,"journal":{"name":"Akdeniz Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140504183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信