The Planetary Science Journal最新文献

筛选
英文 中文
Uranus Orbiter and Probe: A Radio Science Investigation to Determine the Planet’s Gravity Field, Depth of the Winds, and Tidal Deformations 天王星轨道器和探测器:无线电科学调查:确定行星引力场、风的深度和潮汐变形
The Planetary Science Journal Pub Date : 2024-05-01 DOI: 10.3847/psj/ad4034
M. Parisi, A. Friedson, C. R. Mankovich, M. Hofstadter, A. Akins, Reza Karimi, Damon F. Landau
{"title":"Uranus Orbiter and Probe: A Radio Science Investigation to Determine the Planet’s Gravity Field, Depth of the Winds, and Tidal Deformations","authors":"M. Parisi, A. Friedson, C. R. Mankovich, M. Hofstadter, A. Akins, Reza Karimi, Damon F. Landau","doi":"10.3847/psj/ad4034","DOIUrl":"https://doi.org/10.3847/psj/ad4034","url":null,"abstract":"\u0000 The most recent Planetary Science and Astrobiology Decadal Survey has proposed Uranus as the target for NASA’s next large-scale mission. The interior structure and atmosphere of the planet are currently poorly understood, and objectives for investigating Uranus’s deeper regions and composition are highly ranked. Traditionally, gravity science has served as one of the primary means for probing the depths of planetary bodies and inferring their internal density distributions. In this work, we present precise numerical simulations of an onboard radio science experiment designed to determine Uranus’s gravity field and tidal deformations, which would offer a rare view into the planet’s interior. We focus on the mission’s orbital planning, discussing crucial parameters such as the number of pericenter passes, orbital inclination, and periapsis altitude necessary to meet the gravity measurement requirements for a Uranus orbiter. Our findings suggest that eight close encounters may be sufficient to determine the zonal gravity field up to J\u0000 8 with a relative accuracy of 10%, if the trajectory is optimized. This would allow for the decoupling of the gravity field components due to interior structure and zonal winds. Additionally, we find that the expected end-of-mission uncertainty on Uranus’s Love number k\u0000 22 is of order ∼0.01 (3σ). This level of accuracy may offer crucial information about Uranus’s inner state and allow for discriminating between a liquid and solid core, thus shedding light on crucial aspects of the planet’s formation and evolution.","PeriodicalId":507360,"journal":{"name":"The Planetary Science Journal","volume":"46 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141033230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dry Downhill Particle Motion on Mars 火星上干燥的下坡粒子运动
The Planetary Science Journal Pub Date : 2024-05-01 DOI: 10.3847/psj/ad3df4
Tetyana Bila, G. Wurm, Kai Stuers, Kolja Joeris, J. Teiser
{"title":"Dry Downhill Particle Motion on Mars","authors":"Tetyana Bila, G. Wurm, Kai Stuers, Kolja Joeris, J. Teiser","doi":"10.3847/psj/ad3df4","DOIUrl":"https://doi.org/10.3847/psj/ad3df4","url":null,"abstract":"\u0000 We recently flew a new setup on parabolic flights for the first time to study particle motion on Martian slopes under Martian gravity. Here, we describe the initial experiments. We used dust/sand beds at varying ambient pressure of a few hundred pascals. The inclination of the particle bed was varied from 0° to 45° and parts of the surface were illuminated under varying conditions. We could observe downhill motion of material related to the insolation at the lowest light flux used of 591 ± 11 W m−2 for JSC Martian simulant. Motion occurred at significantly lower inclinations under illumination than without illumination, i.e., down to about 10° compared to about 20°–30°, respectively. We attribute this reduction in slope to thermal creep gas flow in the subsoil. This induces a Knudsen compressor, which supports grains against gravity and leads to smaller angles of repose. This is applicable to recurring slope lineae and slopes on Mars in general.","PeriodicalId":507360,"journal":{"name":"The Planetary Science Journal","volume":"12 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141022794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
VADER: Probing the Dark Side of Dimorphos with LICIACube LUKE VADER:与 LICIACube LUKE 一起探索 Dimorphos 的黑暗面
The Planetary Science Journal Pub Date : 2024-04-01 DOI: 10.3847/psj/ad3826
A. Zinzi, P. Hasselmann, V. Della Corte, J. Deshapriya, I. Gai, A. Lucchetti, A. Pajola, A. Rossi, E. Dotto, E. Mazzotta Epifani, R. T. Daly, M. Hirabayashi, T. Farnham, C. M. Ernst, S. Ivanovski, J.-Y. Li, L. Parro, M. Amoroso, J. Beccarelli, I. Bertini, J. Brucato, Andrea Capannolo, S. Caporali, M. Ceresoli, G. Cremonese, M. Dall’Ora, L. Gomez Casajus, E. Gramigna, S. Ieva, G. Impresario, R. Lasagni Manghi, M. Lavagna, M. Lombardo, D. Modenini, B. Negri, P. Palumbo, D. Perna, S. Pirrotta, G. Poggiali, P. Tortora, F. Tusberti, M. Zannoni, G. Zanotti
{"title":"VADER: Probing the Dark Side of Dimorphos with LICIACube LUKE","authors":"A. Zinzi, P. Hasselmann, V. Della Corte, J. Deshapriya, I. Gai, A. Lucchetti, A. Pajola, A. Rossi, E. Dotto, E. Mazzotta Epifani, R. T. Daly, M. Hirabayashi, T. Farnham, C. M. Ernst, S. Ivanovski, J.-Y. Li, L. Parro, M. Amoroso, J. Beccarelli, I. Bertini, J. Brucato, Andrea Capannolo, S. Caporali, M. Ceresoli, G. Cremonese, M. Dall’Ora, L. Gomez Casajus, E. Gramigna, S. Ieva, G. Impresario, R. Lasagni Manghi, M. Lavagna, M. Lombardo, D. Modenini, B. Negri, P. Palumbo, D. Perna, S. Pirrotta, G. Poggiali, P. Tortora, F. Tusberti, M. Zannoni, G. Zanotti","doi":"10.3847/psj/ad3826","DOIUrl":"https://doi.org/10.3847/psj/ad3826","url":null,"abstract":"\u0000 The ASI cubesat LICIACube has been part of the first planetary defense mission DART, having among its scopes to complement the DRACO images to better constrain the Dimorphos shape. LICIACube had two different cameras, LEIA and LUKE, and to accomplish its goal, it exploited the unique possibility of acquiring images of the Dimorphos hemisphere not seen by DART from a vantage point of view, in both time and space. This work is indeed aimed at constraining the tridimensional shape of Dimorphos, starting from both LUKE images of the nonimpacted hemisphere of Dimorphos and the results obtained by DART looking at the impacted hemisphere. To this aim, we developed a semiautomatic Computer Vision algorithm, named VADER, able to identify objects of interest on the basis of physical characteristics, subsequently used as input to retrieve the shape of the ellipse projected in the LUKE images analyzed. Thanks to this shape, we then extracted information about the Dimorphos ellipsoid by applying a series of quantitative geometric considerations. Although the solution space coming from this analysis includes the triaxial ellipsoid found by using DART images, we cannot discard the possibility that Dimorphos has a more elongated shape, more similar to what is expected from previous theories and observations. The result of our work seems therefore to emphasize the unique value of the LICIACube mission and its images, making even clearer the need of having different points of view to accurately define the shape of an asteroid.","PeriodicalId":507360,"journal":{"name":"The Planetary Science Journal","volume":"107 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140757042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sulfur Implantation into Water Ice with Propane: Implications for Organic Chemistry on the Surface of Europa 用丙烷将硫植入水冰:欧罗巴表面有机化学的意义
The Planetary Science Journal Pub Date : 2024-04-01 DOI: 10.3847/psj/ad3204
A. Bouquet, Cíntia Aparecida Pires da Costa, P. Boduch, Hermann Rothard, Alicja Domaracka, G. Danger, Isabelle Schmitz, C. Afonso, P. Schmitt-Kopplin, V. Hue, T. Nordheim, Alexander Ruf, F. Duvernay, Maryse Napoleoni, N. Khawaja, F. Postberg, Thomas Javelle, O. Mousis, Laura Isabel Tenelanda Osorio
{"title":"Sulfur Implantation into Water Ice with Propane: Implications for Organic Chemistry on the Surface of Europa","authors":"A. Bouquet, Cíntia Aparecida Pires da Costa, P. Boduch, Hermann Rothard, Alicja Domaracka, G. Danger, Isabelle Schmitz, C. Afonso, P. Schmitt-Kopplin, V. Hue, T. Nordheim, Alexander Ruf, F. Duvernay, Maryse Napoleoni, N. Khawaja, F. Postberg, Thomas Javelle, O. Mousis, Laura Isabel Tenelanda Osorio","doi":"10.3847/psj/ad3204","DOIUrl":"https://doi.org/10.3847/psj/ad3204","url":null,"abstract":"\u0000 We performed experiments of implantation of energetic sulfur ions (105 keV) into 2:1 water:propane ices at 80 K and analyzed the resulting refractory organic matter with ultrahigh-resolution mass spectrometry. Our goal was to characterize the organic matter processed in the surface conditions of Europa, where it would receive a heavy flux of energetic particles, including sulfur ions, and determine whether organosulfurs could be formed in these conditions, using the simplest alkane that can exist in solid form on Europa’s surface. We find that the produced organic matter contains a large variety of both aliphatic and aromatic compounds (several thousand unique formulae), including polycyclic aromatic hydrocarbons (PAHs), with masses up to 900 amu. A large number of aromatic hydrocarbons is found along with oxygenated, mostly aliphatic, compounds. Organosulfurs are found in both CHS and CHOS form, demonstrating they can be formed from any organic compound through sulfur implantation. These organosulfurs’ properties (aromaticity, mass) appear similar to the rest of the organic matter, albeit their low quantity does not allow for a thorough comparison. Our results have implications for the type of refractory organic matter that could be observed by the JUICE and Europa Clipper space missions and how the surface of Europa could generate complex organics, including PAHs and organosulfurs, that could then enrich the subsurface ocean. In particular, they indicate that a large diversity of organic matter, including organosulfurs, can be formed from simple precursors in a geologically short time frame under the ion flux that reaches Europa.","PeriodicalId":507360,"journal":{"name":"The Planetary Science Journal","volume":"9 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140769917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tectonics and Seismicity of the Lunar South Polar Region 月球南极地区的构造和地震活动
The Planetary Science Journal Pub Date : 2024-01-01 DOI: 10.3847/psj/ad1332
T. R. Watters, N. C. Schmerr, R. C. Weber, C. L. Johnson, E. Speyerer, M. S. Robinson, M. E. Banks
{"title":"Tectonics and Seismicity of the Lunar South Polar Region","authors":"T. R. Watters, N. C. Schmerr, R. C. Weber, C. L. Johnson, E. Speyerer, M. S. Robinson, M. E. Banks","doi":"10.3847/psj/ad1332","DOIUrl":"https://doi.org/10.3847/psj/ad1332","url":null,"abstract":"\u0000 The lunar south pole regions are subjected to global stresses that result in contractional deformation and associated seismicity. This deformation is mainly expressed by lobate thrust fault scarps; examples are globally distributed, including polar regions. One small cluster of lobate scarps falls within the de Gerlache Rim 2 Artemis III candidate landing region. The formation of the largest de Gerlache scarp, less than 60 km from the pole, may have been the source of one of the strongest shallow moonquakes recorded by the Apollo Passive Seismic Network. The scarp is within a probabilistic space of relocated epicenters for this event determined in a previous study. Modeling suggests that a shallow moonquake with an M\u0000 \u0000 w\u0000 of ∼5.3 may have formed the lobate thrust fault scarp. We modeled the peak ground acceleration generated by such an event and found that strong to moderate ground shaking is predicted at a distance from the source of at least ∼40 km, while moderate to light shaking may extend beyond ∼50 km. Models of the slope stability in the south polar region predict that most of the steep slopes in Shackleton crater are susceptible to regolith landslides. Light seismic shaking may be all that is necessary to trigger regolith landslides, particularly if the regolith has low cohesion (on the order of ∼0.1 kPa). The potential of strong seismic events from active thrust faults should be considered when preparing and locating permanent outposts and pose a possible hazard to future robotic and human exploration of the south polar region.","PeriodicalId":507360,"journal":{"name":"The Planetary Science Journal","volume":"311 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139635886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Relative Effects of Surface and Subsurface Morphology on the Deflection Efficiency of Kinetic Impactors: Implications for the DART Mission 表面和次表面形态对动能撞击器偏转效率的相对影响:对 DART 任务的影响
The Planetary Science Journal Pub Date : 2024-01-01 DOI: 10.3847/psj/ad11ec
M. DeCoster, R. Luther, Gareth S. Collins, Kaiyi Dai, T. Davison, D. Graninger, Felix Kaufmann, E. Rainey, A. Stickle
{"title":"The Relative Effects of Surface and Subsurface Morphology on the Deflection Efficiency of Kinetic Impactors: Implications for the DART Mission","authors":"M. DeCoster, R. Luther, Gareth S. Collins, Kaiyi Dai, T. Davison, D. Graninger, Felix Kaufmann, E. Rainey, A. Stickle","doi":"10.3847/psj/ad11ec","DOIUrl":"https://doi.org/10.3847/psj/ad11ec","url":null,"abstract":"\u0000 The Double Asteroid Redirection Test (DART) mission impacted Dimorphos, the moonlet of the binary asteroid 65803 Didymos, on 2022 September 26 and successfully tested a kinetic impactor as an asteroid deflection technique. The success of the deflection was partly due to the momentum of the excavated ejecta material, which provided an extra push to change Dimorphos’s orbital period. Preimpact images provided constraints on the surface but not the subsurface morphology of Dimorphos. DART observations indicated that Dimorphos contained a boulder-strewn surface, with an impact site located between a cluster of large surface boulders. In order to better understand the momentum enhancement factor (β) resulting from the impact, we performed impact simulations into two types of targets: idealized homogeneous targets with a single boulder of varying size and buried depth at the impact site and an assembly of boulders at the impact site with subsurface layers. We investigated the relative effects of surface morphology to subsurface morphology to put constraints on the modeling phase space for DART following impact. We found that surface features created a 30%–96% armoring effect on β, with large surface boulders measuring on the order of the spacecraft bus creating the largest effect. Subsurface effects were more subtle (3%–23%) and resulted in an antiarmoring effect on β, even when layers/boulders were close to the surface. We also compared our 2D axisymmetric models to a 3D rectilinear model to understand the effects of grid geometry and dimension on deflection efficiency computational results.","PeriodicalId":507360,"journal":{"name":"The Planetary Science Journal","volume":"24 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139633192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dimorphos Orbit Determination from Mutual Events Photometry 通过相互事件光度测定法确定迪莫非斯轨道
The Planetary Science Journal Pub Date : 2024-01-01 DOI: 10.3847/psj/ad12cf
P. Scheirich, P. Pravec, A. J. Meyer, H. Agrusa, Derek C. Richardson, S. Chesley, S. Naidu, Cristina A. Thomas, N. Moskovitz
{"title":"Dimorphos Orbit Determination from Mutual Events Photometry","authors":"P. Scheirich, P. Pravec, A. J. Meyer, H. Agrusa, Derek C. Richardson, S. Chesley, S. Naidu, Cristina A. Thomas, N. Moskovitz","doi":"10.3847/psj/ad12cf","DOIUrl":"https://doi.org/10.3847/psj/ad12cf","url":null,"abstract":"\u0000 The NASA Double Asteroid Redirection Test spacecraft successfully impacted the Didymos–Dimorphos binary asteroid system on 2022 September 26 UTC. We provide an update to its preimpact mutual orbit and estimate the postimpact physical and orbital parameters, derived using ground-based photometric observations taken from 2022 July to 2023 February. We found that the total change of the orbital period was −33.240 ± 0.072 minutes (all uncertainties are 3σ). We obtained the eccentricity of the postimpact orbit to be 0.028 ± 0.016 and the apsidal precession rate was 7.3 ± 2.0 degrees day−1 from the impact to 2022 December 2. The data taken later in 2022 December to 2023 February suggest that the eccentricity dropped close to zero or the orbit became chaotic approximately 70 days after the impact. Most of the period change took place immediately after the impact, but in the few weeks following the impact it was followed by an additional change of \u0000 \u0000\u0000\u0000 \u0000 −\u0000 \u0000 \u0000 27\u0000 \u0000 \u0000 −\u0000 58\u0000 \u0000 \u0000 +\u0000 19\u0000 \u0000 \u0000 \u0000 \u0000 s or −19 ± 18 s (the two values depend on the approach we used to describe the evolution of the orbital period after the impact—an exponentially decreasing angular acceleration or the assumption of a constant orbital period, which changed abruptly some time after the impact, respectively). We estimate the preimpact Dimorphos–Didymos size ratio was 0.223 ± 0.012 and the postimpact is 0.202 ± 0.018, which indicate a marginally significant reduction of Dimorphos’ volume by (9 ± 9)% as the result of the impact.","PeriodicalId":507360,"journal":{"name":"The Planetary Science Journal","volume":"2 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139635269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Cassini UVIS Observations of the Enceladus Auroral Footprint on Saturn in 2017 卡西尼号紫外可见光谱仪 2017 年对土星上的恩克拉多斯极光足迹的观测
The Planetary Science Journal Pub Date : 2024-01-01 DOI: 10.3847/psj/ad0cbc
W. Pryor, Fabiola P. Magalhães, Laurent Lamy, R. Prangé, Larry W. Esposito, J. Gustin, A. Rymer, A. Sulaiman
{"title":"Cassini UVIS Observations of the Enceladus Auroral Footprint on Saturn in 2017","authors":"W. Pryor, Fabiola P. Magalhães, Laurent Lamy, R. Prangé, Larry W. Esposito, J. Gustin, A. Rymer, A. Sulaiman","doi":"10.3847/psj/ad0cbc","DOIUrl":"https://doi.org/10.3847/psj/ad0cbc","url":null,"abstract":"\u0000 Ultraviolet Imaging Spectrograph (UVIS) observations show the Enceladus auroral footprint on Saturn on 2017 September 14, near the end of the Cassini mission. A series of Saturn north polar auroral images were obtained by slowly slewing the Cassini spacecraft at right angles to the UVIS long slit. The images were limb-fit to improve the spacecraft geometry. Enhanced extreme-ultraviolet 88–118 nm channel emissions due to electron impact on atomic and molecular hydrogen were seen in the expected location for the Enceladus auroral footprint on five successive images spanning almost 4 hr. Enhanced emissions were also seen in simultaneously obtained far-ultraviolet 111–165 nm images in at least two of these images, with the spectral signature expected for auroral emissions. While most Cassini UVIS auroral images do not show the Enceladus auroral footprint, these 2017 images support the earlier detection of an Enceladus-linked spot on Saturn in 2008 Cassini UVIS data.","PeriodicalId":507360,"journal":{"name":"The Planetary Science Journal","volume":"43 S9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139637155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lunar Mare Lava Flow Dynamics and Emplacement: Predictions of Non-Newtonian Flow Dynamics, Syn- and Post-emplacement Cooling and Volatile Release Patterns, and Vertical and Lateral Flow Structure Development 月球母岩熔岩流动力学和置换:非牛顿流体动力学、同步和置换后冷却与挥发物释放模式以及垂直和侧向流动结构发展的预测
The Planetary Science Journal Pub Date : 2024-01-01 DOI: 10.3847/psj/ad0e12
Lionel Wilson, James W. Head
{"title":"Lunar Mare Lava Flow Dynamics and Emplacement: Predictions of Non-Newtonian Flow Dynamics, Syn- and Post-emplacement Cooling and Volatile Release Patterns, and Vertical and Lateral Flow Structure Development","authors":"Lionel Wilson, James W. Head","doi":"10.3847/psj/ad0e12","DOIUrl":"https://doi.org/10.3847/psj/ad0e12","url":null,"abstract":"\u0000 We apply basic principles of magma ascent from deep source regions and its eruption into a low-gravity vacuum environment to develop a theoretical treatment of the fluid dynamics and thermodynamics of mare basalt lava flow emplacement and evolution on the Moon. The vacuum conditions influenced the release of volatiles in magma passing through lava fountains, thus controlling the syn- and post-emplacement vesicularity of the resulting deposits. To explain observed lengths and volumes of Mare Imbrium–type flows, high (106–105 m3 s−1) initial magma eruption rates were needed. Combined with low lunar magma viscosity, these caused flows to be initially turbulent. Resulting high radiative heat loss and consequent high crystallization rates caused rapid non-Newtonian rheological evolution and suppression of turbulence at tens of kilometers from vents. Slower cooling rates in the subsequent laminar parts of flows imply distinctive crystal growth rate histories. In a four-phase sequence, (i) initial transient dike-tip gas release followed by (ii) Hawaiian fire fountain activity with efficient volatile loss (iii) transitioned to (iv) Strombolian explosions in a lava lake. Late-stage lava now able to retain volatiles intruded and inflated existing flow deposits after flow front advance ceased. Volatiles forced out of solution by second boiling as lava cooled caused additional inflation. Low gravity and lack of atmospheric pressure commonly produced very vesicular lava. Escape of such lava through cracks in flow crusts is a possible source of ring-moat dome structures; collapse of such lava may explain irregular mare patches.","PeriodicalId":507360,"journal":{"name":"The Planetary Science Journal","volume":"286 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139636314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum: “Temporal Evolution of Titan's Stratospheric Temperatures and Trace Gases from a Two-dimensional Retrieval of Cassini Composite Infrared Spectrometer Data” (2023, PSJ, 4, 140) 勘误:"从卡西尼复合红外分光计数据的二维检索看土卫六平流层温度和痕量气体的时间演变" (2023, PSJ, 4, 140)
The Planetary Science Journal Pub Date : 2023-09-01 DOI: 10.3847/PSJ/acf379
R. Achterberg
{"title":"Erratum: “Temporal Evolution of Titan's Stratospheric Temperatures and Trace Gases from a Two-dimensional Retrieval of Cassini Composite Infrared Spectrometer Data” (2023, PSJ, 4, 140)","authors":"R. Achterberg","doi":"10.3847/PSJ/acf379","DOIUrl":"https://doi.org/10.3847/PSJ/acf379","url":null,"abstract":"","PeriodicalId":507360,"journal":{"name":"The Planetary Science Journal","volume":"171 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139343955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信