Deep Underground Science and Engineering最新文献

筛选
英文 中文
Effects of elevated ground temperatures on properties of cement grouts for deep rock grouting 地温升高对用于深层岩石灌浆的水泥灌浆料性能的影响
Deep Underground Science and Engineering Pub Date : 2024-02-04 DOI: 10.1002/dug2.12073
Zhipeng Xu, Jianping Sun, Runguo Li, Lei He, Changwu Liu
{"title":"Effects of elevated ground temperatures on properties of cement grouts for deep rock grouting","authors":"Zhipeng Xu, Jianping Sun, Runguo Li, Lei He, Changwu Liu","doi":"10.1002/dug2.12073","DOIUrl":"https://doi.org/10.1002/dug2.12073","url":null,"abstract":"Appropriate determination of the mix ratios of cement grouts is of vital importance to the quality of rock grouting and the risk reduction of groundwater inflow. The behavior of grout, often highly temperature dependent, is likely to be affected by the elevated ground temperature in deep rock masses. This paper aims to experimentally gain insights into the effects of elevated ground temperatures on the properties of cement grout in fresh and hardened states in deep rock grouting. The results revealed that a temperature of 35°C is crucial for changes in the properties of thick cement grout with a water–cement ratio of less than 0.8. When the temperature is up to 35°C, there can be significant improvements in rheological parameters, acceleration of grout setting, and increase in the rheological time dependence of thick cement grout; however, there may also be a slight impact on the initial grout flowability and the nature of shear thinning. The high temperature may still improve the stability of fresh cement grout and also improve the porosity and creep deformation of hardened cement grout considerably. The proposed constitutive model that couples the Burgers model with a fractional derivative‐based Abel dashpot in the series can be used to characterize the creep behavior of hardened cement grout appropriately. The paper provides a valuable reference for optimization of mixture design of cement grouts, thus enhancing deep rock grouting quality and improving safety.","PeriodicalId":505870,"journal":{"name":"Deep Underground Science and Engineering","volume":"565 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139806786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信