{"title":"Torsion Fields as a Reality","authors":"Yuri Pivovarenko","doi":"10.24018/ejphysics.2024.6.4.336","DOIUrl":"https://doi.org/10.24018/ejphysics.2024.6.4.336","url":null,"abstract":"Torsion fields are currently perceived as science fiction. It is shown here that such a perception is incorrect since the existence of torsion fields around terrestrial objects is determined by the laws of classical electrodynamics. In addition, it is shown here that there are both natural and artificial phenomena that can be considered as evidence of the reality of torsion fields.","PeriodicalId":504877,"journal":{"name":"European Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141833491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wellingtone Kibande, Joseph Omolo, Dismas Wamalwa Simiyu
{"title":"Gravitation in Flat Euclidean Spacetime Frame: Unified Electrogravity and Magnetogravity Forces","authors":"Wellingtone Kibande, Joseph Omolo, Dismas Wamalwa Simiyu","doi":"10.24018/ejphysics.2024.6.4.334","DOIUrl":"https://doi.org/10.24018/ejphysics.2024.6.4.334","url":null,"abstract":"An effective description of physics requires an appropriate geometrical frame. Three-dimensional Euclidean space provides the geometrical frame for non-relativistic physics. A derivation of an imaginary temporal axis −icˆq the speed, ˆq the unit wave-vector of light, extends the standard Euclidean space into a well-defined four-dimensional Euclidean spacetime frame, which provides the natural mathematical framework for relativistic physics. The basic elements of the Euclidean spacetime frame are fully specified four-component complex vectors satisfying standard vector operations and vector identities. In developing a theory of gravitation in the Euclidean spacetime frame, we have used the Lense-Thirring spacetime metric of linearized general relativity to derive an appropriate complex four-component gravitational field potential vector. Taking the curl of the field potential vector provides a unified complex gravitational field strength composed of electric-type and magnetic-type components. Taking the cross-product of the complex four-component velocity and the field strength provides a unified complex gravitational force intensity composed of gravitoelectric and gravitomagnetic components. Application to the motion of a gyroscope in the gravitational field of the earth provides the standard results of frame-dragging and geodetic effects as determined in linearized general relativity theory.","PeriodicalId":504877,"journal":{"name":"European Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141833044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ChatGPT on the Gravitational Redshift","authors":"Jiří Stávek","doi":"10.24018/ejphysics.2024.6.1.295","DOIUrl":"https://doi.org/10.24018/ejphysics.2024.6.1.295","url":null,"abstract":"This is my first attempt to communicate with the ChatGPT on the gravitational redshift. Chat GPT during our half-hour conversation reacted promptly to explain to me the basic information about the gravitational redshift. Chat GPT confirmed the unique position of Einstein’s gravitation theory which is very well confirmed by numerous experiments. It will be extremely difficult to propose a new gravitational theory for the Euclidean space. Such a theory should explain the existing data for Euclidean space. Moreover, it should define the limitations of the general theory of relativity and propose some experiments that will enable to compare predictions of both theories.","PeriodicalId":504877,"journal":{"name":"European Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139617496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}