IET Control Theory & Applications最新文献

筛选
英文 中文
Multiple‐missile fixed‐time integrated guidance and control design with multi‐stage interconnected observers under impact angle and input saturation constraints 在撞击角和输入饱和约束条件下,利用多级互联观测器进行多枚导弹定时综合制导与控制设计
IET Control Theory & Applications Pub Date : 2024-04-12 DOI: 10.1049/cth2.12658
Dingye Zhang, Hang Yu, Keren Dai, Wenjun Yi, He Zhang, Zhiming Lei
{"title":"Multiple‐missile fixed‐time integrated guidance and control design with multi‐stage interconnected observers under impact angle and input saturation constraints","authors":"Dingye Zhang, Hang Yu, Keren Dai, Wenjun Yi, He Zhang, Zhiming Lei","doi":"10.1049/cth2.12658","DOIUrl":"https://doi.org/10.1049/cth2.12658","url":null,"abstract":"In this paper, a novel three‐dimensional fixed‐time integrated guidance and control (IGC) scheme with multi‐stage interconnected observers is proposed for cooperative attacks using multiple missiles against a maneuvering target under impact angle and input saturation constraints. External disturbances, modeling errors, and aerodynamic parameter variations are considered as system uncertainties and a three‐channel fully coupled IGC model for multiple missiles is established. The IGC system is designed optimally based on fixed‐time stability theory, sliding mode control, and the backstepping technique. Three inter‐cascaded fixed‐time disturbance observers based on an improved super‐twisting algorithm are designed to estimate and compensate for system uncertainties. Second‐order command filters are used to constrain virtual control signals, and additional filtering error subsystems are introduced to compensate for the tracking errors of filters. System stability and uniformly ultimately fixed‐time boundedness of all states are proven using the Lyapunov stability theory. Finally, the limits of the acceleration components of the maneuvering target perpendicular to the line of sight direction are derived. The effectiveness of the designed IGC scheme and the ability of multi‐stage interconnected observers to sense disturbances with each other are verified through simulations.","PeriodicalId":502998,"journal":{"name":"IET Control Theory & Applications","volume":"7 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140710599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of fractional MOIF and MOPIF controller using PSO algorithm for the stabilization of an inverted pendulum‐cart system 利用 PSO 算法设计用于稳定倒立摆-小车系统的分数 MOIF 和 MOPIF 控制器
IET Control Theory & Applications Pub Date : 2024-04-04 DOI: 10.1049/cth2.12648
Fatima Cheballah, R. Mellah, Abdelhakim Saim
{"title":"Design of fractional MOIF and MOPIF controller using PSO algorithm for the stabilization of an inverted pendulum‐cart system","authors":"Fatima Cheballah, R. Mellah, Abdelhakim Saim","doi":"10.1049/cth2.12648","DOIUrl":"https://doi.org/10.1049/cth2.12648","url":null,"abstract":"The topic of this paper is the design of two fractional order schemes, based on a state feedback for linear integer order system. In the first one of the state feedback is associated with a fractional order integral () controller. In the second structure the state feedback is associated with a fractional order proportional integral () controller. With such controllers, the closed loop system with state feedback described by the state equations splits in n‐subsystems with different fractional orders derivatives of the state variable. In order to find the optimal parameters value of both controllers () and (), a multi‐objective particle swarm optimization algorithm is used, with the integral of absolute error, the overshoot , the Buslowicz stability criterion are considered as objective functions. The multi‐objective integral fractional order controller and the multi‐objective proportional integral fractional order controller are applied to stabilize the inverted pendulum‐cart system (IP‐C), and their performance is compared to the fractional order controller. The simulation results of these innovative controllers are also compared with those obtained by conventional proportional–integral–derivative and fractional order proportional–integral–derivative controllers. The robustness of the proposed controllers against disturbances is investigated through simulation runs, considering the non‐linear model of the IP‐C system. The obtained results demonstrate that our approach not only leads to high effectiveness but also showcases remarkable robustness, supported by both simulation and experimental results.","PeriodicalId":502998,"journal":{"name":"IET Control Theory & Applications","volume":"73 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140741544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid finite‐time fault‐tolerant consensus control of non‐linear fractional order multi‐agent systems based on fault detection and estimation 基于故障检测和估计的非线性分数阶多代理系统的混合有限时间容错共识控制
IET Control Theory & Applications Pub Date : 2024-02-14 DOI: 10.1049/cth2.12627
Mahmood Nazifi, M. Pourgholi
{"title":"Hybrid finite‐time fault‐tolerant consensus control of non‐linear fractional order multi‐agent systems based on fault detection and estimation","authors":"Mahmood Nazifi, M. Pourgholi","doi":"10.1049/cth2.12627","DOIUrl":"https://doi.org/10.1049/cth2.12627","url":null,"abstract":"This paper addresses the problem of achieving finite‐time fault‐tolerant consensus control for a class of non‐linear fractional‐order multi‐agent systems (NFO‐MAS) using finite‐time fault detection and estimation, as well as a finite‐time state observer. To achieve this, a specific lemma is utilized to rewrite the high‐order model of NFO‐MAS as a lower‐order NFO unique system. By employing new identification rules and introducing a fault estimation method, both the state variables and faults of the agents are estimated within a finite time. Subsequently, a finite‐time sliding mode control law is designed based on the estimated fault and the state variables obtained from the proposed finite‐time observer to achieve consensus within a finite time for the fractional‐order non‐linear MAS. The stability of the fault estimation, state observer, and consensus controller is proven using the finite‐time Lyapunov theory. The effectiveness of the proposed approach is demonstrated through numerical simulations.","PeriodicalId":502998,"journal":{"name":"IET Control Theory & Applications","volume":"118 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139836706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A leader‐follower communication protocol for motion planning in partially known environments under temporal logic specifications 时间逻辑规范下部分已知环境中运动规划的领导者-追随者通信协议
IET Control Theory & Applications Pub Date : 2024-02-13 DOI: 10.1049/cth2.12636
Xiaohong Yan, Yingying Liu, Renwen Chen, Wei Duan
{"title":"A leader‐follower communication protocol for motion planning in partially known environments under temporal logic specifications","authors":"Xiaohong Yan, Yingying Liu, Renwen Chen, Wei Duan","doi":"10.1049/cth2.12636","DOIUrl":"https://doi.org/10.1049/cth2.12636","url":null,"abstract":"This paper considers the problem of communication protocols between leaders and its followers for motion planning in an initially partially known environment. In this setting, the leader observes the environment information to satisfy its own local objective and and the follower completes its own local objective by estimating the states of the leader and communicating with the leader to update its knowledge about the environment when it is necessary, where the local objectives can be expressed in temporal logic. A verifier construction is built first to contain all possible communication protocols between the leaders and the followers. Then, a two‐step synthesis procedure is proposed to capture all feasible communication protocol that satisfy the local objectives for the leader and follower, respectively. In the first step, a sub‐verifier is synthesized to satisfy the objective of the follower. In the second step, based on the obtained sub‐verifier, an iterative algorithm is proposed to extract communication protocols such that the objectives of the leader and follower are satisfied, respectively. A running example is provided to illustrate the proposed procedures.","PeriodicalId":502998,"journal":{"name":"IET Control Theory & Applications","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139779753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring solar energy systems: A comparative study of optimization algorithms, MPPTs, and controllers 探索太阳能系统:优化算法、MPPT 和控制器的比较研究
IET Control Theory & Applications Pub Date : 2024-02-10 DOI: 10.1049/cth2.12626
Aykut Fatih Güven
{"title":"Exploring solar energy systems: A comparative study of optimization algorithms, MPPTs, and controllers","authors":"Aykut Fatih Güven","doi":"10.1049/cth2.12626","DOIUrl":"https://doi.org/10.1049/cth2.12626","url":null,"abstract":"This study elucidates the use of optimization algorithms to identify the controller parameters employed in adjusting the current and voltage values of loads powered by solar energy systems and battery groups. Parameters for these controllers were independently derived using a combination of ant colony optimization with Levy flight, hybrid firefly‐particle swarm optimization, hybrid gravitation search algorithm‐particle swarm optimization, alongside the implementation of Jaya and whale optimization algorithms. The results from each method were juxtaposed for thorough analysis. In addition, three distinct Maximum Power Point Tracker (MPPT) algorithms were employed in the system: perturbation and observation, open circuit voltage, and incremental conductance (IC). To assess the system’s adaptability to real‐world conditions, it was tested against varying temperatures and sunlight levels. Moreover, potential changes in the loads were considered by varying the load. The efficacy of the controllers was examined by altering both the environment and load. The effectiveness of the controllers was examined by referring to the integral of time‐weighted absolute error value. The system was simulated using MATLAB/Simulink software. This study demonstrates that the fractional‐order PID controller achieves the most effective results, the Jaya algorithm provides the best controller parameters, and the IC technique exhibits the highest performance in MPPT.","PeriodicalId":502998,"journal":{"name":"IET Control Theory & Applications","volume":" 1016","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139787135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability analysis of discrete‐time systems with a time‐varying delay via improved methods 通过改进方法对具有时变延迟的离散时间系统进行稳定性分析
IET Control Theory & Applications Pub Date : 2024-02-08 DOI: 10.1049/cth2.12632
Hongjia Sha, Ju H. Park, Jun Chen, Mingbo Zhu, Chengjie Nan
{"title":"Stability analysis of discrete‐time systems with a time‐varying delay via improved methods","authors":"Hongjia Sha, Ju H. Park, Jun Chen, Mingbo Zhu, Chengjie Nan","doi":"10.1049/cth2.12632","DOIUrl":"https://doi.org/10.1049/cth2.12632","url":null,"abstract":"This paper is concerned with the stability analysis of discrete‐time systems with a time‐varying delay. The conservatism and computation burden are two important factors to evaluate a stability condition. By taking the relationship of two reciprocally convex parts into consideration, a new combined matrix‐separation‐based inequality is proposed that involves only a few free matrices. Moreover, an improved matrix‐injection‐based transformation lemma with the parameter varying within a closed interval is proposed by introducing only one free matrix. By constructing an appropriate Lyapunov–Krasovskii functional and applying the improved methods, a relaxed stability condition is consequently obtained with a small number of decision variables. Two numerical examples are given to show the merits of the proposed methods.","PeriodicalId":502998,"journal":{"name":"IET Control Theory & Applications","volume":"65 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139851913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Koopman fault‐tolerant model predictive control Koopman 容错模型预测控制
IET Control Theory & Applications Pub Date : 2024-02-08 DOI: 10.1049/cth2.12629
Mohammadhosein Bakhtiaridoust, Meysam Yadegar, Fatemeh Jahangiri
{"title":"Koopman fault‐tolerant model predictive control","authors":"Mohammadhosein Bakhtiaridoust, Meysam Yadegar, Fatemeh Jahangiri","doi":"10.1049/cth2.12629","DOIUrl":"https://doi.org/10.1049/cth2.12629","url":null,"abstract":"This paper introduces a novel data‐driven approach to develop a fault‐tolerant model predictive controller (MPC) for non‐linear systems. By adopting a Koopman operator‐theoretic perspective, the proposed method leverages historical data from the system to construct a data‐driven model that captures the non‐linear behaviour and fault characteristics. The fault influence is addressed through an online estimation of a time‐varying Koopman predictor, which allows for adjusting the MPC control law to counteract the fault effects. This estimation is performed in a higher dimensional Koopman feature space, where the dynamics behave linearly. As a result, the non‐linear fault‐tolerant MPC optimization problem can be replaced with a more practical and feasible linear time‐varying one using the approximated Koopman predictor. Moreover, by incorporating the online update procedure, the time‐varying Koopman predictor can represent the dynamics of the faulty system. Hence, the controller can adapt and compensate for the faults in real‐time, integrating the fault diagnosis module in the MPC framework and eliminating the need for a separate fault detection unit. Finally, the efficacy of the proposed approach is demonstrated through case study results, which highlight the ability of the controller to mitigate faults and maintain desired system behaviour.","PeriodicalId":502998,"journal":{"name":"IET Control Theory & Applications","volume":" 15","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139793208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive control of BLDC driven robot manipulators in task space 任务空间中 BLDC 驱动机器人机械手的自适应控制
IET Control Theory & Applications Pub Date : 2024-02-06 DOI: 10.1049/cth2.12631
Şükrü Ünver, Erman Selim, E. Tatlıcıoğlu, E. Zergeroğlu, M. Alcı
{"title":"Adaptive control of BLDC driven robot manipulators in task space","authors":"Şükrü Ünver, Erman Selim, E. Tatlıcıoğlu, E. Zergeroğlu, M. Alcı","doi":"10.1049/cth2.12631","DOIUrl":"https://doi.org/10.1049/cth2.12631","url":null,"abstract":"In this study, task space tracking control of robot manipulators driven by brushless DC (BLDC) motors is considered. Dynamics of actuators are taken into account and the entire electromechanical system (i.e. kinematic, dynamic, and electrical models) is assumed to include parametric/structured uncertainties. A novel adaptive controller is designed and the stability of the closed loop system is ensured via novel Lyapunov type tools. To demonstrate performance and applicability of the proposed method, a simulation study is conducted using the model of a two degree of freedom, planar robotic manipulator driven by BLDC motors.","PeriodicalId":502998,"journal":{"name":"IET Control Theory & Applications","volume":"14 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139800577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信