Ecological Research最新文献

筛选
英文 中文
Phytoremediating the air down under: Evaluating airborne particulate matter accumulation by 12 plant species in Australia 对澳大利亚的空气进行植物修复:评估澳大利亚 12 种植物对空气中微粒物质的积累情况
Ecological Research Pub Date : 2024-06-12 DOI: 10.1111/1440-1703.12493
Anamika Roy, Mamun Mandal, A. Przybysz, Alison Haynes, Sharon A. Robinson, Abhijit Sarkar, R. Popek
{"title":"Phytoremediating the air down under: Evaluating airborne particulate matter accumulation by 12 plant species in Australia","authors":"Anamika Roy, Mamun Mandal, A. Przybysz, Alison Haynes, Sharon A. Robinson, Abhijit Sarkar, R. Popek","doi":"10.1111/1440-1703.12493","DOIUrl":"https://doi.org/10.1111/1440-1703.12493","url":null,"abstract":"Atmospheric particulate matter (PM) is the most inhaled hazardous air pollutant that can cause adverse health impacts. Plants can remove such contaminants and act as biological filters through phytoremediation. In this study, we screened 12 Australian native species (two deciduous trees, three evergreen shrubs, and seven evergreen trees) growing in three regions to determine their potential in accumulating leaf surface (SPM) and in‐wax PM (WPM). Among the screened species, Lagunaria patersonia (139.22 μg cm−2) was the most effective PM accumulator, followed by Ficus obliqua (131.02 μg cm−2). L. patersonia is an Australian native tree with a dense crown that can efficiently trap PM due to air turbulence between its leaves and branches; broad leaves with a rough texture enhance the plant's ability to trap PM. On the contrary, morphological characteristics like evergreen leaves with hairy appendages may act as an efficient trap for PM in F. obliqua. Due to smoother leaves, the least effective species were F. rubignosa and Eucalyptus saligna. In addition to leaf shape, leaf structures and micromorphology influence PM accumulation. For instance, Pittosporum undulatum accumulated more PM due to its wrinkled and folded leaf structures despite a significantly lower waxes layer. The findings highlight the importance of planting efficient PM accumulator species to shield vulnerable areas from pollution and decrease human exposure to pollutants. The sink capacity of these species can be used in urban tree planning to combat air pollution and improve air quality.","PeriodicalId":502284,"journal":{"name":"Ecological Research","volume":"19 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141354549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信