Indagationes Mathematicae最新文献

筛选
英文 中文
A simplified approach to the holomorphic discrete series 全形离散级数的简化方法
Indagationes Mathematicae Pub Date : 2024-04-02 DOI: 10.1016/j.indag.2024.03.014
Adam Korányi
{"title":"A simplified approach to the holomorphic discrete series","authors":"Adam Korányi","doi":"10.1016/j.indag.2024.03.014","DOIUrl":"https://doi.org/10.1016/j.indag.2024.03.014","url":null,"abstract":"Expository article on semisimple Lie groups of Hermitian type and their unitary representations known as the holomorphic discrete series. The realization of the symmetric spaces associated to the groups as bounded symmetric domains is described. The representations in question are defined by holomorphic induction and realized on spaces of vector-valued holomorphic functions on the domain. A key question is whether the induction process yields a non-zero space. It is answered by Harish-Chandra’s condition, for which a complete proof is given.","PeriodicalId":501252,"journal":{"name":"Indagationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140589789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parameters of Hecke algebras for Bernstein components of p-adic groups p-adic 群伯恩斯坦成分的赫克代数参数
Indagationes Mathematicae Pub Date : 2024-04-01 DOI: 10.1016/j.indag.2024.04.005
M. Solleveld
{"title":"Parameters of Hecke algebras for Bernstein components of <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" id=\"d1e390\" altimg=\"si13.svg\"><mml:mi>p</mml:mi></mml:math>-adic groups","authors":"M. Solleveld","doi":"10.1016/j.indag.2024.04.005","DOIUrl":"https://doi.org/10.1016/j.indag.2024.04.005","url":null,"abstract":"","PeriodicalId":501252,"journal":{"name":"Indagationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140778482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum superintegrable spin systems on graph connections 图连接上的量子超可积自旋系统
Indagationes Mathematicae Pub Date : 2024-03-16 DOI: 10.1016/j.indag.2024.03.008
Nicolai Reshetikhin, Jasper Stokman
{"title":"Quantum superintegrable spin systems on graph connections","authors":"Nicolai Reshetikhin, Jasper Stokman","doi":"10.1016/j.indag.2024.03.008","DOIUrl":"https://doi.org/10.1016/j.indag.2024.03.008","url":null,"abstract":"In this paper we construct certain quantum spin systems on moduli spaces of -connections on a connected oriented finite graph, with a simply connected compact Lie group. We construct joint eigenfunctions of the commuting quantum Hamiltonians in terms of local invariant tensors. We determine sufficient conditions ensuring superintegrability of the quantum spin system using irreducibility criteria for Harish-Chandra modules due to Harish-Chandra and Lepowsky & McCollum. The resulting class of quantum superintegrable spin systems includes the quantum periodic and open spin Calogero–Moser spin chains as special cases. In the periodic case the description of the joint eigenfunctions in terms of local invariant tensors are multipoint generalized trace functions, in the open case multipoint spherical functions on compact symmetric spaces.","PeriodicalId":501252,"journal":{"name":"Indagationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symplectic complexity of reductive group actions 还原群作用的交映复杂性
Indagationes Mathematicae Pub Date : 2024-03-16 DOI: 10.1016/j.indag.2024.03.010
Avraham Aizenbud, Dmitry Gourevitch
{"title":"Symplectic complexity of reductive group actions","authors":"Avraham Aizenbud, Dmitry Gourevitch","doi":"10.1016/j.indag.2024.03.010","DOIUrl":"https://doi.org/10.1016/j.indag.2024.03.010","url":null,"abstract":"Let a complex algebraic reductive group act on a complex algebraic manifold . For a -invariant subvariety of the nilpotent cone we define a notion of -symplectic complexity of . This notion generalizes the notion of complexity defined in Vinberg (1986). We prove several properties of this notion, and relate it to the notion of -complexity defined in Aizenbud and Gourevitch (2024) motivated by its relation with representation theory.","PeriodicalId":501252,"journal":{"name":"Indagationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generating operators of symmetry breaking — From discrete to continuous 对称破缺的生成算子 - 从离散到连续
Indagationes Mathematicae Pub Date : 2024-03-15 DOI: 10.1016/j.indag.2024.03.007
Toshiyuki Kobayashi
{"title":"Generating operators of symmetry breaking — From discrete to continuous","authors":"Toshiyuki Kobayashi","doi":"10.1016/j.indag.2024.03.007","DOIUrl":"https://doi.org/10.1016/j.indag.2024.03.007","url":null,"abstract":"Based on the “generating operator” of the Rankin–Cohen bracket introduced in Kobayashi–Pevzner [arXiv:2306.16800], we present a method to construct various fundamental operators with continuous parameters such as invariant trilinear forms on infinite-dimensional representations, the Fourier and the Poisson transforms on the anti-de Sitter space, and integral symmetry breaking operators for the fusion rules, among others, out of a countable set of differential symmetry breaking operators.","PeriodicalId":501252,"journal":{"name":"Indagationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Berezin quantization and representation theory 贝雷津量子化和表示理论
Indagationes Mathematicae Pub Date : 2024-03-15 DOI: 10.1016/j.indag.2024.03.006
V.F. Molchanov
{"title":"Berezin quantization and representation theory","authors":"V.F. Molchanov","doi":"10.1016/j.indag.2024.03.006","DOIUrl":"https://doi.org/10.1016/j.indag.2024.03.006","url":null,"abstract":"We present an approach to Berezin quantization (a variant of quantization in the spirit of Berezin) on para-Hermitian symmetric spaces using the notion of an “overgroup”. This approach gives covariant and contravariant symbols and the Berezin transform in a natural and transparent way.","PeriodicalId":501252,"journal":{"name":"Indagationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symmetric pairs and branching laws 对称对和分支定律
Indagationes Mathematicae Pub Date : 2024-03-15 DOI: 10.1016/j.indag.2024.03.009
Paul-Émile Paradan
{"title":"Symmetric pairs and branching laws","authors":"Paul-Émile Paradan","doi":"10.1016/j.indag.2024.03.009","DOIUrl":"https://doi.org/10.1016/j.indag.2024.03.009","url":null,"abstract":"Let be a compact connected Lie group and let be a subgroup fixed by an involution. A classical result assures that the -action on the flag variety of admits a finite number of orbits. In this article we propose a formula for the branching coefficients of the symmetric pair that is parametrized by .","PeriodicalId":501252,"journal":{"name":"Indagationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信