Soil and Tillage Research最新文献

筛选
英文 中文
N2O emissions from controlled-release and conventional N-fertilizers applied to red-yellow soil in Okinawa, Japan
Soil and Tillage Research Pub Date : 2024-12-18 DOI: 10.1016/j.still.2024.106376
W.B.M.A.C. Bandara, Kazuhito Sakai, Mitsumasa Anan, Shinya Nakamura, Hideki Setouchi, Kosuke Noborio, Toshimitsu Kaif, R.H.K. Rathnappriya
{"title":"N2O emissions from controlled-release and conventional N-fertilizers applied to red-yellow soil in Okinawa, Japan","authors":"W.B.M.A.C. Bandara, Kazuhito Sakai, Mitsumasa Anan, Shinya Nakamura, Hideki Setouchi, Kosuke Noborio, Toshimitsu Kaif, R.H.K. Rathnappriya","doi":"10.1016/j.still.2024.106376","DOIUrl":"https://doi.org/10.1016/j.still.2024.106376","url":null,"abstract":"In Okinawa, Japan, controlled-release N fertilizers (CRFs) are promoted to reduce labor and to increase fertilizer use efficiency. However, N<ce:inf loc=\"post\">2</ce:inf>O emissions from N fertilizer applied to the widely prevalent <ce:italic>Kunigami mahji</ce:italic> (red-yellow soil), a local soil in the region, have not been examined so far. We conducted two laboratory experiments during winter and spring to compare N<ce:inf loc=\"post\">2</ce:inf>O emissions between CRF and standard fertilizer (ammonium sulfate: AS) in <ce:italic>kunigami mahji</ce:italic>. Two seasons were selected to explore the effects of moisture and temperature on N<ce:inf loc=\"post\">2</ce:inf>O emissions in relation to N fertilization. For each experiment, three soil chambers were used, each containing 1.4 kg of soil: one served as a control, and the other two received 1 g of nitrogen from either a linear-release-type CRF with 42 % N or AS with 21 % N. Over 9 weeks, N₂O emissions from the headspace of each chamber were measured every minute for 20 min, followed by 70 min of ventilation, in a continuous 90-minute cycle repeated throughout the study. Soil moisture, soil temperature, NO, and NO<ce:inf loc=\"post\">3</ce:inf>-N and NH<ce:inf loc=\"post\">4</ce:inf>-N in leachate were also analyzed. In exp A (winter), nitrification was dominant, and N<ce:inf loc=\"post\">2</ce:inf>O emission from CRF (emission factor, EF, 0.4 %) was 88 % lower than that from AS (EF 3.9 %). In exp B (spring), denitrification was dominant, and N<ce:inf loc=\"post\">2</ce:inf>O emission from CRF (EF 1.9 %) was 53 % lower than that from AS (EF 4 %). The frequently lower water-filled pore space (WFPS) in exp A than in exp B facilitated higher NO emission from AS than from CRF. Due to the consistently high WFPS in Exp B, most of the NO<ce:inf loc=\"post\">3</ce:inf><ce:sup loc=\"post\">−</ce:sup> in the soil was reduced to N<ce:inf loc=\"post\">2</ce:inf>O and N<ce:inf loc=\"post\">2</ce:inf>. N is more readily available in AS than in CRF, facilitating higher cumulative leaching of NH<ce:inf loc=\"post\">4</ce:inf>-N from AS. However, in both experiments, AS was denitrified more than CRF, producing more N<ce:inf loc=\"post\">2</ce:inf>O and resulting in lower leaching of NO<ce:inf loc=\"post\">3</ce:inf>-N. Our results highlight that choosing the appropriate form of fertilizer and good management of soil moisture content can reduce N<ce:inf loc=\"post\">2</ce:inf>O emissions and leaching of NO<ce:inf loc=\"post\">3</ce:inf><ce:sup loc=\"post\">−</ce:sup> and NH<ce:inf loc=\"post\">4</ce:inf><ce:sup loc=\"post\">+</ce:sup>.","PeriodicalId":501007,"journal":{"name":"Soil and Tillage Research","volume":"78 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Medium-term effects of tillage, crop rotation and crop residue management practices on selected soil physical properties in the sub-humid region of Eastern Cape, South Africa
Soil and Tillage Research Pub Date : 2024-12-18 DOI: 10.1016/j.still.2024.106420
Cossy Shayne Nonxuba, Dimpho Elvis Elephant, Adornis Dakarai Nciizah, Alen Manyevere
{"title":"Medium-term effects of tillage, crop rotation and crop residue management practices on selected soil physical properties in the sub-humid region of Eastern Cape, South Africa","authors":"Cossy Shayne Nonxuba, Dimpho Elvis Elephant, Adornis Dakarai Nciizah, Alen Manyevere","doi":"10.1016/j.still.2024.106420","DOIUrl":"https://doi.org/10.1016/j.still.2024.106420","url":null,"abstract":"The conservation agricultural effects on soil physical properties are not immediately visible and are variable but might be observed in medium to long-term studies. The objective of this study was to assess the medium-term (ten year) effect of conservation agricultural practices on selected soil physical properties in a sub-humid region of Eastern Cape, South Africa. The assessment was performed on a conservation agriculture (CA) field trial established in 2012, laid out in a randomized complete block design (RCBD) with split split-plot treatment structure consisting of 16 treatment combinations replicated into 3 blocks. The main plots, sub plots and sub <ce:glyph name=\"sbnd\"></ce:glyph> sub plots were allocated to tillage (no-tillage (NT) and conventional tillage (CT)), crop rotations (maize-fallow-maize (MFM); maize-soybean-maize (MFS); maize-wheat-maize (MWM); maize-wheat-soybean (MWS)), and crop residue management practices (residue retention (R+) and residue removal (R-)), respectively. Soil samples were collected from 0 – 10, 10 – 20 and 20 – 30 cm depths in the 2023/24 cropping season. The results showed that tillage practices had a significantly greater impact on bulk density (BD), porosity (ϕ) and aggregate stability (AGS)/ stability index (SI) compared to crop rotations and residue management. Soybean rotation treatments: MFS and MWS had 3.42 % and 2.08 % lower BD values compared with MFM and MWM, respectively. This is likely due to the quick decomposition of soybean residues, indicating potential improvement in soil health and soil quality with legume inclusion in rotations. Additionally, R+ plots had 24.24 % higher gravimetric water content and 25.04 % higher volumetric water content than R- plots, due to the substantial amount of SOM returned by residue decomposition. There were no significant differences observed in Ks, which could be attributed to the nature of the particle size distribution, as water moves more easily on sandy soils. These medium-term results present continual benefits from proper implementation of CA in sustainable farming and resource conservation.","PeriodicalId":501007,"journal":{"name":"Soil and Tillage Research","volume":"83 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seasonal variations of soil functions affected by straw incorporation in croplands with different degradation degrees
Soil and Tillage Research Pub Date : 2024-12-18 DOI: 10.1016/j.still.2024.106426
Chengshu Wang, Guanghui Zhang, Shiqi Chen
{"title":"Seasonal variations of soil functions affected by straw incorporation in croplands with different degradation degrees","authors":"Chengshu Wang, Guanghui Zhang, Shiqi Chen","doi":"10.1016/j.still.2024.106426","DOIUrl":"https://doi.org/10.1016/j.still.2024.106426","url":null,"abstract":"The reduction of soil function in croplands is widespread over the world resulting from land degradation induced by intensified agricultural practices. Straw incorporation likely affects soil function in sloping croplands. However, the quantitative influences of incorporated straw on the seasonal dynamics of soil function in croplands with different degradation degrees are still uncertain. The objective of the study is to identify the seasonal variations of different soil functions affected by straw incorporation in different degraded croplands in the black soil region of China. The results of network analysis denoted that soil functions could be fully quantified by eight factors. They were water-stable aggregate, available nitrogen, available phosphorus, humin acid, cation exchange capacity, soil organic matter, invertase and catalase. Significant seasonal variations were observed in soil function factors of different degraded croplands under straw incorporation treatment and its control (p &lt; 0.05). Correspondingly, soil functions exhibited significant seasonal variations in various degraded croplands (p &lt; 0.05). Soil functions were greatly enhanced by incorporated straw. In comparison to the without straw incorporation treatment, soil functions increased by 0.8 %-47.4 % during the growing season. The promotions in soil functions by straw incorporation were closely related to land degradation degree. Compared to cropland of non-degradation, the enhancements of soil functions declined by 6.2 %-58.5 %, 6.5 %-81.7 % and 11.7 %-95.2 % in the light, moderate and strong degradation croplands, respectively. Incorporated straw stimulated crop growth by improving soil functions and the crop yield increased by 12.7 %-18.7 %. Straw incorporation enhances soil functions and crop growth via improved water-stable aggregate, soil organic matter, cation exchange capacity and humin acid of different degraded croplands. The results highlight the significance of straw incorporation in degraded croplands to ameliorate soil functions and crop growth in intensive agricultural regions.","PeriodicalId":501007,"journal":{"name":"Soil and Tillage Research","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revisiting penetrometer models for estimating root elongation
Soil and Tillage Research Pub Date : 2024-12-17 DOI: 10.1016/j.still.2024.106400
Renato Paiva de Lima, Cássio Antonio Tormena, Moacir Tuzzin de Moraes, Zigomar Menezes de Souzar, Mário Monteiro Rolim, Maurício Roberto Cherubin
{"title":"Revisiting penetrometer models for estimating root elongation","authors":"Renato Paiva de Lima, Cássio Antonio Tormena, Moacir Tuzzin de Moraes, Zigomar Menezes de Souzar, Mário Monteiro Rolim, Maurício Roberto Cherubin","doi":"10.1016/j.still.2024.106400","DOIUrl":"https://doi.org/10.1016/j.still.2024.106400","url":null,"abstract":"Mechanical impedance has been reported as a major factor reducing root elongation. Penetrometer is the main tool for diagnosing mechanical soil conditions regarding root growth; however, soil mechanics processes influence root cavity expansion, friction and adhesion at the soil-metal interface which can induce root-related measurement overestimations. Models based on penetrometers have been used to estimate root elongation and assign penetration resistance thresholds, which have been used to determine soil physical limitation for plant development. In this paper, we revisited soil mechanical aspects modeling considering root-soil and penetrometer-soil interfaces, including calculation examples. Moreover, we revisited the application of penetration resistance threshold in soil integrated physical indices for root and plant growth. Our calculations showed that friction is a major factor inducing overestimates at penetrometer-soil interfaces. However, current mathematical models enable estimating normal stress for cavity expansion by removing the effect of soil adhesion and friction, and reducing the impact of penetrometer cone tip angle on soil-metal friction. Additionally, we estimated root elongation rate for a series of plant species as a function of penetrometer resistance which could be applied to soil physical indices for estimating limit plant growth threshold.","PeriodicalId":501007,"journal":{"name":"Soil and Tillage Research","volume":"55 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil salinity accumulation and groundwater degradation due to overexploitation over recent 40-year period in Yaoba Oasis, China
Soil and Tillage Research Pub Date : 2024-12-12 DOI: 10.1016/j.still.2024.106398
Ting Lu, Pingping Luo, Jucui Wang, Yudong Lu, Aidi Huo, Liming Liu
{"title":"Soil salinity accumulation and groundwater degradation due to overexploitation over recent 40-year period in Yaoba Oasis, China","authors":"Ting Lu, Pingping Luo, Jucui Wang, Yudong Lu, Aidi Huo, Liming Liu","doi":"10.1016/j.still.2024.106398","DOIUrl":"https://doi.org/10.1016/j.still.2024.106398","url":null,"abstract":"Yaoba Oasis is a traditional tillage farmland completely dependent on irrigation with groundwater. Previous investigations (1980–2015) have revealed that over-extraction of groundwater, deterioration of water quality, and soil salinization are the primary factors limiting the development of the regional agricultural economy. This study aimed to determine the impact of human activities, specifically groundwater exploitation and agricultural irrigation, on the migration of soil salinization since 1980 in the Yaoba Oasis. Specifically, water and soil samples were collected and analyzed from 90 wells and 21 soil sites. Results indicated that the groundwater level in the oasis has steadily declined at a rate of 0.04–0.59 m per year, primarily due to groundwater overexploitation. The annual average soil salt accumulation was approximately 91.1–155.2 mg/kg. Soil salinity was strongly correlated with the hydrochemical composition, with all indicators increasing along the flow path. Irrigation infiltration resulted in salt accumulation below 20 cm, with residual salts being leached by the irrigation return water. Overall, residual salt dissolution under flood irrigation and saltwater intrusion in desert salt lakes are the main reasons for soil salt accumulation and groundwater quality deterioration. To mitigate these issues and maintain the ecological balance of desert oases, it is imperative to limit the overexploitation of groundwater and reduce the amount of irrigation, thereby preventing groundwater contamination and soil salinization.","PeriodicalId":501007,"journal":{"name":"Soil and Tillage Research","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of long-term fertiliser application on cropland soil carbon dynamics mediated by potential shifts in microbial carbon use efficiency
Soil and Tillage Research Pub Date : 2024-12-12 DOI: 10.1016/j.still.2024.106418
Di He, Guihua Li, Zhongkui Luo, Enli Wang
{"title":"Effects of long-term fertiliser application on cropland soil carbon dynamics mediated by potential shifts in microbial carbon use efficiency","authors":"Di He, Guihua Li, Zhongkui Luo, Enli Wang","doi":"10.1016/j.still.2024.106418","DOIUrl":"https://doi.org/10.1016/j.still.2024.106418","url":null,"abstract":"Fertiliser application in agricultural ecosystems affects not only the potential carbon input (via crop biomass and/or manure) into the soil, but also a series of soil processes regulating soil organic carbon (SOC) decomposition. A detailed mechanistic understanding of how fertiliser regimes affect SOC dynamics is still needed. Here we constrained the Agricultural Production Systems sIMulator (APSIM model) to long-term (&gt; 20 years) crop and SOC measurement data collected from four trials under contrasting climatic and edaphic conditions in China. By optimizing the three most influential model parameters for SOC dynamics, i.e., the decomposition rate constant of the slow humic pool (<ce:italic>rd_hum</ce:italic>), the fraction of stable (non-decomposable) pool (<ce:italic>Finert</ce:italic>), and microbial carbon use efficiency (CUE), we analysed their responses to fertiliser application regimes to infer potential mechanisms underpinning SOC changes. Our results revealed strong effects of fertiliser regimes and sites on CUE. Sites, fertiliser regimes and their interactions explained 67 % and 1.4 % of the variation in the derived CUE and <ce:italic>rd_hum</ce:italic> values, respectively. Linear mixed-effects modelling showed that soil C:N ratio together with carbon input amount as a random effect explained 90 % of the variation in optimised CUE values across sites and treatments. Such impact on CUE could partly explain the impact of fertiliser and carbon input on the priming effect. Fertilisers with more carbon input (i.e., straw or manure) increased CUE by 27 % - 57 % compared with chemical fertilisers in three of four sites. However, their impacts on <ce:italic>rd_hum</ce:italic> was divergent when decomposition of carbon pools was simulated with first-order processes. Our results demonstrate the significant effects of fertiliser regimes on CUE and thus SOC dynamics, highlighting the importance of site-specific calibration of the current SOC models and the need to quantify uncertainty bounds of any model simulated further SOC sequestration. This study also calls for developing a clear understanding to quantify the relationship between carbon input and CUE under different environment.","PeriodicalId":501007,"journal":{"name":"Soil and Tillage Research","volume":"90 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nature-based accumulation of organic carbon and nitrogen in citrus orchard soil with grass coverage
Soil and Tillage Research Pub Date : 2024-12-12 DOI: 10.1016/j.still.2024.106419
Ludan Chen, Yuhai Bao, Xiubin He, Jie Yang, Qiao Wu, Jiaorong Lv
{"title":"Nature-based accumulation of organic carbon and nitrogen in citrus orchard soil with grass coverage","authors":"Ludan Chen, Yuhai Bao, Xiubin He, Jie Yang, Qiao Wu, Jiaorong Lv","doi":"10.1016/j.still.2024.106419","DOIUrl":"https://doi.org/10.1016/j.still.2024.106419","url":null,"abstract":"Grass coverage in orchards has increasingly become a sustainable practice to improve soil quality, reduce soil erosion, increase water infiltration, and enhance biodiversity and ecosystem services. It is likely to gain further adoption as a promising nature-based measure to increase organic carbon and nitrogen storage in soil. However, there is still a lack of comprehensive global quantification regarding the accumulation and availability of soil organic carbon (SOC) and total nitrogen (STN) after grass coverage in citrus orchards. A global meta-analysis was conducted to comprehensively evaluate the effects of grass coverage on SOC and STN dynamics in citrus orchards, as well as the patterns influenced by various factors. Compared to clean tillage, the accumulation rates of SOC and STN were significantly enhanced with grass coverage, with an increase of 19.98 Mg ha⁻¹ yr⁻¹ and 2.27 Mg ha⁻¹ yr⁻¹ , respectively. The microbial biomass carbon (MBC), dissolved organic carbon (DOC) and available nitrogen (AN) exhibited significantly increases following grass coverage, with average enhancements of 13.90 %, 17.94 %, and 18.04 %, respectively. The primary factors influencing the variation in SOC and STN were identified as grass age and growth modes. When grass coverage reached or exceeded 10 years and was applied uniformly across the entire orchard (full coverage), there was a more pronounced increase in SOC and STN levels. The present study provides policymakers and orchard managers with science-based evidence to guide adaptive management practices that enhance SOC and STN stocks, improve soil conditions, and increase orchard resilience to climate change.","PeriodicalId":501007,"journal":{"name":"Soil and Tillage Research","volume":"142 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High soil bacterial diversity increases the stability of the community under grazing and nitrogen
Soil and Tillage Research Pub Date : 2024-12-10 DOI: 10.1016/j.still.2024.106414
Muhammad Usman, Mengyuan Wang, Yang Liu, Lan Li, Xiumin Zhang, Tianhao Xiao, Fujiang Hou
{"title":"High soil bacterial diversity increases the stability of the community under grazing and nitrogen","authors":"Muhammad Usman, Mengyuan Wang, Yang Liu, Lan Li, Xiumin Zhang, Tianhao Xiao, Fujiang Hou","doi":"10.1016/j.still.2024.106414","DOIUrl":"https://doi.org/10.1016/j.still.2024.106414","url":null,"abstract":"Grasslands are one of the major terrestrial ecosystems facing severe degradation due to climatic changes and anthropogenic activities. In northwest China, the Typical steppe and alpine meadows are the major grasslands with diverse ecosystems. These grasslands are facing degradation due to excessive livestock grazing and nitrogen (N) deposition that can alter the overall grassland ecosystem, along with the soil bacterial communities and their role in the ecosystem. The bacterial community is vital for the sustainability of grassland ecosystems as it plays a crucial role in decomposing the dead organic matter and nutrient cycling. This study conducted a grazing and N addition experiment in alpine meadows and typical steppe. The impact of short-term N application and grazing on both grasslands' soil, plant, and bacterial communities was explored. Alpine meadows had higher bacterial richness (OTUs&gt;2000) and diversity (Shannon index&gt;6) than the typical steppe (OTUs&lt;900; Shannon index&lt;5.5) due to changes in climate and ecosystem. The alpha diversity (Shannon index) of the bacterial community was observed to increase under low grazing without N addition while adding medium N (100 kg/ha) without grazing increased the diversity. The combination of medium N (100 kg/ha) addition and low grazing resulted in the highest bacterial diversity in both grasslands. In contrast, the combination of N and high grazing decreased bacterial richness and diversity. The N addition and grazing affected the bacterial community composition in the typical steppe. The co-occurrence networks revealed that the network complexity in bacterial communities of alpine meadows was higher than that of typical steppe. The rich bacterial community and high soil nutrients in alpine meadows might have led to diverse microbial functionality, which provided stability to the bacterial network. The low nutrients and water availability in typical steppe lead to a lower bacterial richness, making the bacterial community vulnerable to the changes due to grazing and N. Climate is a significant factor in shaping the grassland ecosystem and its bacterial community. The changes in the grassland’s ecosystem due to high grazing and N deposition would highly affect the distressed microbial communities in arid and semiarid regions. Further, in-depth studies are required to understand the fate of these vulnerable grasslands and design management strategies for their protection.","PeriodicalId":501007,"journal":{"name":"Soil and Tillage Research","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rice straw management options impact soil phosphorus adsorption-desorption, kinetics and thermodynamics in rice-wheat system of north-western India
Soil and Tillage Research Pub Date : 2024-12-09 DOI: 10.1016/j.still.2024.106403
Sandeep Sharma, Paawan Kaur
{"title":"Rice straw management options impact soil phosphorus adsorption-desorption, kinetics and thermodynamics in rice-wheat system of north-western India","authors":"Sandeep Sharma, Paawan Kaur","doi":"10.1016/j.still.2024.106403","DOIUrl":"https://doi.org/10.1016/j.still.2024.106403","url":null,"abstract":"Fluctuations in soil management practices, temperature and moisture conditions can impact adsorption-desorption and bioavailability of phosphorus (P) in agricultural soils. Therefore, this study investigates P dynamics in straw-managed soils of Punjab collected from five treatments namely (1) conventional tillage (CT) after removal of rice straw (CT-R), (2) Treatment 1 plus biochar amendment at 2 Mg ha<ce:sup loc=\"post\">−1</ce:sup> (CT+biochar), (3) zero tillage with straw retention as mulch (ZT+RM), (4) CT with straw incorporation (CT+RI) and (5) CT after rice residue burned (CT+RB) after three years from an ongoing experiment in rice-wheat cropping system. The adsorption-desorption of P followed pseudo second order kinetics (R<ce:sup loc=\"post\">2</ce:sup>&gt; 0.99) and Freundlich isotherm (R<ce:sup loc=\"post\">2</ce:sup>&gt; 0.95) for all the treatments and temperatures. Freundlich adsorption capacity (K<ce:inf loc=\"post\">Fads</ce:inf>) varied with the physico-chemical soil properties and ranged from 10.9 to 28.5, 14.3–32.2, 18.3–40.2, and 22.5–56.5 μg<ce:sup loc=\"post\">1−n</ce:sup>g<ce:sup loc=\"post\">−1</ce:sup>mL<ce:sup loc=\"post\">n</ce:sup> at 15, 25, 35, and 45 ± 1°C, respectively. The sequential order of P adsorption was as follows: CT+ biochar &gt; CT+RB &gt; ZT+RM &gt; CT+RI &gt; CT-R, irrespective of temperature. Thermodynamic parameters revealed feasible, spontaneous and endothermic process indicative of physio-sorption via. hydrogen bonding as the dominant mechanism in <ce:italic>in-situ</ce:italic> straw managed soils. The Freundlich desorption coefficient (<ce:italic>K</ce:italic><ce:inf loc=\"post\"><ce:italic>Fdes</ce:italic></ce:inf>) ranged from 54.8 to 85.2, 39.9–60.8, 23.4–37.0, 29.6–45.7 and 19.4–36.7 μg<ce:sup loc=\"post\">1−n</ce:sup>g<ce:sup loc=\"post\">−1</ce:sup>mL<ce:sup loc=\"post\">n</ce:sup> in CT+ biochar, CT+ RB, ZT+RM, CT+RI, CT-R, respectively at studied temperatures and was greater than adsorption in all treatments indicating hysteresis. The desorption sequence was observed as: CT-R &gt; CT+RI &gt; ZT+RM &gt; CT+ RB&gt; CT+ biochar. The greater adsorption and slower desorption of P under <ce:italic>in-situ</ce:italic> straw managed treatments (CT+biochar, CT+RB and ZT+RM) than CT-R and CT +RI, particularly CT+ biochar compared to CT-R will lead to more P retention in soil matrix thereby preventing eutrophication and deterioration of surface waters.","PeriodicalId":501007,"journal":{"name":"Soil and Tillage Research","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the molecular mechanisms of interactions between biochar and denitrifiers in N₂O emissions reduction: Pathway to more economical and sustainable fertilizers
Soil and Tillage Research Pub Date : 2024-12-09 DOI: 10.1016/j.still.2024.106405
Babak Minofar, Nevena Milčić, Josef Maroušek, Beata Gavurová, Anna Maroušková
{"title":"Understanding the molecular mechanisms of interactions between biochar and denitrifiers in N₂O emissions reduction: Pathway to more economical and sustainable fertilizers","authors":"Babak Minofar, Nevena Milčić, Josef Maroušek, Beata Gavurová, Anna Maroušková","doi":"10.1016/j.still.2024.106405","DOIUrl":"https://doi.org/10.1016/j.still.2024.106405","url":null,"abstract":"Biochar application to topsoil has been repeatedly and independently reported to reduce N<ce:inf loc=\"post\">2</ce:inf>O emissions, yet the underlying mechanisms remain poorly understood. This study hypothesizes that biochar enhances the stability and catalytic activity of N<ce:inf loc=\"post\">2</ce:inf>O reductase enzymes in denitrifying bacteria, promoting the conversion of N<ce:inf loc=\"post\">2</ce:inf>O to N<ce:inf loc=\"post\">2</ce:inf> during denitrification. Interactions between biochar and the N<ce:inf loc=\"post\">2</ce:inf>O reductase enzyme (PsN<ce:inf loc=\"post\">2</ce:inf>OR) from the denitrifying bacterium <ce:italic>Pseudomonas stutzeri</ce:italic> were investigated through molecular dynamics simulations. The obtained results firstly revealed that biochar stabilizes this periplasmic enzyme in the aqueous solution via hydrophobic and hydrophilic interactions. Specifically, π–π stacking and hydrophobic interactions reduce the thermal fluctuations of hydrophobic amino acids, lowering entropy and improving enzymatic efficiency. Additionally, biochar adsorbs N<ce:inf loc=\"post\">2</ce:inf>O molecules, facilitating their delivery to the active site of the enzyme and enhancing the reaction rate. Deeper understandings of molecular interactions open new pathways in developing biochar-based fertilizers with slower, more economically and more environmentally favorable release of nutrients. This new type of fertilizers creates new opportunities for the biochar market, positioning it as a valuable tool for carbon sequestration and the mitigation of N₂O emissions.","PeriodicalId":501007,"journal":{"name":"Soil and Tillage Research","volume":"248 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信