Emerging Information Science and Technology最新文献

筛选
英文 中文
Discrete Curvelet Transform Feature Extraction for Mangosteen Fruit Surface Damage Detection 用于山竹果表面损伤检测的离散小曲线变换特征提取
Emerging Information Science and Technology Pub Date : 2024-06-05 DOI: 10.18196/eist.v5i1.22602
N. A. Utama, Wahyu Indah Triyani, Slamet Riyadi, Cahya Damarjati
{"title":"Discrete Curvelet Transform Feature Extraction for Mangosteen Fruit Surface Damage Detection","authors":"N. A. Utama, Wahyu Indah Triyani, Slamet Riyadi, Cahya Damarjati","doi":"10.18196/eist.v5i1.22602","DOIUrl":"https://doi.org/10.18196/eist.v5i1.22602","url":null,"abstract":"Mangosteen (Garcinia mangostana L) is one of the commodities of Indonesian fruit and is used as an export primadona that became the basis of Indonesia to increase the currency of the country. The quality of the fruit can be seen from the surface, whether there is damage or not. The sorting that the farmers have been doing all this time is still using the conventional way, that is, with the sense of sight. This conventional method seems to be less effective because it takes a lot of energy, takes a long time, and there are different perceptions between farmers. To solve this problem, a method of surface quality extraction of mango fruit will be developed based on image processing. The initial stage of image processing is with the image size equation then the image is converted to grayscale mode, then a discrete curvelet transformation is performed. The next stage is the extraction of mean, energy, entropy, standard deviation, variance, sum, correlation, contrast, and homogeneity. The result of the subsequent feature extraction is used to enter a value at the classification stage. From some of these extractions it will be known which extraction has the highest accuracy value. The method of classification used is Linear Discriminant Analysis (LDA) with the method of K-Fold Cross Validation which in this study is divided into 4-fold cross validation. After testing on 120 images, the highest value of accuracy is with extraction of standard characteristics deviation of 91.7% and variance of 88.4%.","PeriodicalId":491933,"journal":{"name":"Emerging Information Science and Technology","volume":"39 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141385896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信