{"title":"A rigorous framework for the mean field limit of multilayer neural networks","authors":"Phan-Minh Nguyen, Huy Tuan Pham","doi":"10.4171/msl/42","DOIUrl":"https://doi.org/10.4171/msl/42","url":null,"abstract":"We develop a mathematically rigorous framework for multilayer neural networks in the mean field regime. As the network's widths increase, the network's learning trajectory is shown to be well captured by a meaningful and dynamically nonlinear limit (the textit{mean field} limit), which is characterized by a system of ODEs. Our framework applies to a broad range of network architectures, learning dynamics and network initializations. Central to the framework is the new idea of a textit{neuronal embedding}, which comprises of a non-evolving probability space that allows to embed neural networks of arbitrary widths. ","PeriodicalId":489458,"journal":{"name":"Mathematical statistics and learning","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135043596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"U-statistics of growing order and sub-Gaussian mean estimators with sharp constants","authors":"Stanislav Minsker","doi":"10.4171/msl/43","DOIUrl":"https://doi.org/10.4171/msl/43","url":null,"abstract":"This paper addresses the following question: given a sample of i.i.d. random variables with finite variance, can one construct an estimator of the unknown mean that performs nearly as well as if the data were normally distributed? One of the most popular examples achieving this goal is the median of means estimator. However, it is inefficient in a sense that the constants in the resulting bounds are suboptimal. We show that a permutation-invariant modification of the median of means estimator admits deviation guarantees that are sharp up to $1+o(1)$ factor if the underlying distribution possesses more than $frac{3+sqrt{5}}{2}approx 2.62$ moments and is absolutely continuous with respect to the Lebesgue measure. This result yields potential improvements for a variety of algorithms that rely on the median of means estimator as a building block. At the core of our argument is are the new deviation inequalities for the U-statistics of order that is allowed to grow with the sample size, a result that could be of independent interest.","PeriodicalId":489458,"journal":{"name":"Mathematical statistics and learning","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135142251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}