Matrik: jurnal manajemen, teknik informatika, dan rekayasa komputer最新文献

筛选
英文 中文
Comparison of Machine Learning Methods for Classifying User Satisfaction Opinions of the PeduliLindungi Application PeduliLindungi应用用户满意度意见分类的机器学习方法比较
Matrik: jurnal manajemen, teknik informatika, dan rekayasa komputer Pub Date : 2023-06-16 DOI: 10.30812/matrik.v22i3.2860
Putu Tisna Putra, Anthony Anggrawan, Hairani Hairani
{"title":"Comparison of Machine Learning Methods for Classifying User Satisfaction Opinions of the PeduliLindungi Application","authors":"Putu Tisna Putra, Anthony Anggrawan, Hairani Hairani","doi":"10.30812/matrik.v22i3.2860","DOIUrl":"https://doi.org/10.30812/matrik.v22i3.2860","url":null,"abstract":"Since the emergence of the Covid-19 virus, the Indonesian government urged people to study, work, and worship or work from home. The social restriction policy has changed people's behavior which requires physical distance in social interaction. The government developed an application to minimize the spread of Covid-19, namely the PeduliLindungi application. The PeduliLindungi application is a tracking application to prevent the spread of Covid-19. The government's policy of implementing the PeduliLindungi application during Covid-19 aroused pros and cons from the public. The volume of PeduliLindungi application review data on Google Play was increasing, so manual analysis could not be done. New analytical approaches needed to be carried out, such as sentiment analysis. This research aimed to analyze user reviews of the PeduilLindungi application using classification methods, namely Support Vector Machine (SVM), Random Forest, and Naïve Bayes. The methods used were Synthetic Minority Oversampling Technique (SMOTE), Random Forest, SVM, and Naïve Bayes. SMOTE was used to balance user review data on the PeduliLindungi application. After the data had been balanced, classification was carried out. The results of this study showed that the Random Forest method with SMOTE got better accuracy than the SVM and Naive Bayes methods, which was 96.3% based on the division of training and testing data using 10-fold cross-validation. Thus, using the SMOTE method could improve the accuracy of classification methods in classifying opinions of user satisfaction with the PeduliLindungi application.","PeriodicalId":489027,"journal":{"name":"Matrik: jurnal manajemen, teknik informatika, dan rekayasa komputer","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135671677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信