International journal of ocean and coastal engineering最新文献

筛选
英文 中文
Extended Applications of the δ-SPH Model for the Numerical Study of Fluid–Soil Interactions 流体与土壤相互作用数值研究中 δ-SPH 模型的扩展应用
International journal of ocean and coastal engineering Pub Date : 2024-01-08 DOI: 10.1142/s2529807023400043
Zi-Yang Zhan, Peng-Nan Sun, Xiao-Ting Huang
{"title":"Extended Applications of the δ-SPH Model for the Numerical Study of Fluid–Soil Interactions","authors":"Zi-Yang Zhan, Peng-Nan Sun, Xiao-Ting Huang","doi":"10.1142/s2529807023400043","DOIUrl":"https://doi.org/10.1142/s2529807023400043","url":null,"abstract":"The fluid–soil interactions play a significant role in coastal and ocean engineering applications. However, there are still some complex mechanical problems with large deformations of water–soil interfaces to be solved. As a particle-based Lagrangian method, Smoothed Particle Hydrodynamics (SPH) is good at solving multiphase problems with large deformations of boundaries or interfaces. Therefore, in this work, the [Formula: see text]-SPH method is extended for the simulation of fluid–soil interacting problems. First, based on the weakly compressible assumption, the water is modeled as a viscous fluid while the soil is considered as a material with elastic–perfectly plastic behaviors. The [Formula: see text]-SPH method is implemented on the two phases separately, while the stress diffusive term only acts on the soil. The seepage force is introduced to model the interaction between two phases. After that, several numerical test cases with small to large interface deformations are presented. It is shown that the fluid–soil interacting model based on the [Formula: see text]-SPH model gives satisfying results compared with experimental data. Finally, the model is further extended for the simulation of vertical or oblique water jet scouring problems which demonstrates the potential applications of the SPH model for complex engineering problems.","PeriodicalId":475980,"journal":{"name":"International journal of ocean and coastal engineering","volume":"5 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139445886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SPH Simulation of Solitary Wave Interaction with Cylinder 孤立波与圆柱相互作用的SPH模拟
International journal of ocean and coastal engineering Pub Date : 2023-11-07 DOI: 10.1142/s2529807023400031
Guozhen Cai, Chi Zhang, Yafei Yang, Min Luo
{"title":"SPH Simulation of Solitary Wave Interaction with Cylinder","authors":"Guozhen Cai, Chi Zhang, Yafei Yang, Min Luo","doi":"10.1142/s2529807023400031","DOIUrl":"https://doi.org/10.1142/s2529807023400031","url":null,"abstract":"The wave impact on marine structures is concerning in ocean and coastal engineering. Cylinders are important components of various marine structures such as piers of sea-crossing bridge, columns of oil and gas platforms and subsea pipelines. In this study, the interaction of solitary wave with a submerged horizontal cylinder and a surface-piercing vertical cylinder are numerically studied by the Smoothed Particle Hydrodynamics (SPH) code SPHinXsys. SPHinXsys is an open-source multi-physics library based on the weakly compressible SPH and invokes the low-dissipation Riemann solver for alleviating numerical noises in the simulation of fluid dynamics. The capability of SPHinXsys in reproducing the fluid fields of solitary wave propagating through cylinders is demonstrated by comparing with the experimental data. With the validation in hand, the features of the wave–structure process are examined.","PeriodicalId":475980,"journal":{"name":"International journal of ocean and coastal engineering","volume":"29 116","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135541382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信