Industrial Artificial Intelligence最新文献

筛选
英文 中文
A mathematical model for efficient extraction of key locations from point-cloud data in track area 从轨道区域点云数据中高效提取关键位置的数学模型
Industrial Artificial Intelligence Pub Date : 2023-12-01 DOI: 10.1007/s44244-023-00011-5
Shuyue Chen, Jiaolv Wu, Jian Lu, Xizhao Wang
{"title":"A mathematical model for efficient extraction of key locations from point-cloud data in track area","authors":"Shuyue Chen, Jiaolv Wu, Jian Lu, Xizhao Wang","doi":"10.1007/s44244-023-00011-5","DOIUrl":"https://doi.org/10.1007/s44244-023-00011-5","url":null,"abstract":"","PeriodicalId":474480,"journal":{"name":"Industrial Artificial Intelligence","volume":" 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138619926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orthogonal stochastic configuration networks with adaptive construction parameter for data analytics 面向数据分析的自适应结构参数正交随机配置网络
Industrial Artificial Intelligence Pub Date : 2023-03-31 DOI: 10.1007/s44244-023-00004-4
Wei Dai, Chuanfeng Ning, Shiyu Pei, Song Zhu, Xuesong Wang
{"title":"Orthogonal stochastic configuration networks with adaptive construction parameter for data analytics","authors":"Wei Dai, Chuanfeng Ning, Shiyu Pei, Song Zhu, Xuesong Wang","doi":"10.1007/s44244-023-00004-4","DOIUrl":"https://doi.org/10.1007/s44244-023-00004-4","url":null,"abstract":"Abstract As a randomized learner model, SCNs are remarkable that the random weights and biases are assigned employing a supervisory mechanism to ensure universal approximation and fast learning. However, the randomness makes SCNs more likely to generate approximate linear correlative nodes that are redundant and low quality, thereby resulting in non-compact network structure. In light of a fundamental principle in machine learning, that is, a model with fewer parameters holds improved generalization. This paper proposes orthogonal SCN, termed OSCN, to filtrate out the low-quality hidden nodes for network structure reduction by incorporating Gram–Schmidt orthogonalization technology. The universal approximation property of OSCN and an adaptive setting for the key construction parameters have been presented in details. In addition, an incremental updating scheme is developed to dynamically determine the output weights, contributing to improved computational efficiency. Finally, experimental results on two numerical examples and several real-world regression and classification datasets substantiate the effectiveness and feasibility of the proposed approach.","PeriodicalId":474480,"journal":{"name":"Industrial Artificial Intelligence","volume":"354 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135788025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信