Honors CalculusPub Date : 2020-09-01DOI: 10.1007/978-1-319-16793-6_6
J. Rogawski, C. Adams
{"title":"Applications of the Integral","authors":"J. Rogawski, C. Adams","doi":"10.1007/978-1-319-16793-6_6","DOIUrl":"https://doi.org/10.1007/978-1-319-16793-6_6","url":null,"abstract":"","PeriodicalId":438476,"journal":{"name":"Honors Calculus","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128209196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Honors CalculusPub Date : 2020-09-01DOI: 10.2307/j.ctv14163vk.11
{"title":"The Riemann Integral","authors":"","doi":"10.2307/j.ctv14163vk.11","DOIUrl":"https://doi.org/10.2307/j.ctv14163vk.11","url":null,"abstract":"The Riemann integral is a fundamental part of calculus and an essential precursor to the Lebesgue integral. In this chapter we define the Riemann integral of a bounded function on an interval I = [a, b] on the real line.","PeriodicalId":438476,"journal":{"name":"Honors Calculus","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129811527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}