{"title":"Drug Analysis","authors":"Shaza W. Shantier","doi":"10.5772/intechopen.88739","DOIUrl":"https://doi.org/10.5772/intechopen.88739","url":null,"abstract":"Instrumental methods are widely used for the analysis and stability studies of compounds in bulk and pharmaceutical forms. They vary in their sensitivity, techniques and reagents involved. This chapter will overview those different techniques and the application of the analytical methods. It will also describe how to design and develop simple, sensitive and accurate method for routine quality control of specified compound depending on its molecular structure. Quality control and assurance of the analytical process will be discussed. Furthermore, the chapter will describe a number of factors affecting the chemical and physical stability of Pharmaceutical formulations and how to develop stability-indicating methods to qualify and quantify the drug degradation.","PeriodicalId":433543,"journal":{"name":"Pharmaceutical Formulation Design - Recent Practices","volume":"133 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127590193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"3D Printing in Pharmaceutical Sector: An Overview","authors":"Asad Ali, Usama Ahmad, J. Akhtar","doi":"10.5772/intechopen.90738","DOIUrl":"https://doi.org/10.5772/intechopen.90738","url":null,"abstract":"The pharmaceutical industry is moving ahead at a rapid pace. Modern technology has enabled the development of novel dosage forms for targeted therapy. However, the fabrication of novel dosage forms at industrial scale is limited and the industry still runs on conventional drug delivery systems, especially modified tablets. The introduction of 3D printing technology in the pharmaceutical industry has opened new horizons in the research and development of printed materials and devices. The main benefits of 3D printing technology lie in the production of small batches of medicines, each with tailored dosages, shapes, sizes, and release characteristics. The manufacture of medicines in this way may finally lead to the concept of personalized medicines becoming a reality. This chapter provides an overview of how 3D printed technology has extended from initial unit operations to developed final products.","PeriodicalId":433543,"journal":{"name":"Pharmaceutical Formulation Design - Recent Practices","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121238401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bioavailability and Bioequivalence Studies","authors":"Divvela Hema Nagadurga","doi":"10.5772/INTECHOPEN.85145","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.85145","url":null,"abstract":"In vivo bioavailability studies are performed for new drug to establish essential pharmacokinetic parameters including rate of absorption, extent of absorption, rates of excretion and metabolism and elimination half-life after a single and multiple dose administration. These essential pharmacokinetic parameters are useful in establishing dosage regimens. Bioequivalence used to assess the expected in vivo biological equivalence of two proprietary preparations of drug products. If two drugs are bioequivalent, it means that they are expected to be same for all intents and purposes. In determining bioequivalence between two drugs such as a reference drug or brand and potential to be test drug or marketed generic drug. Pharmacokinetic studies are conducted whereby each of the drugs is administered in a cross over study to healthy volunteer’s subjects. Plasma is obtained at regular intervals and assayed for parent drug or metabolite concentration to compare the two drugs. For comparison purpose of two formulations, the plasma concentration data are used to assess key pharmacokinetic parameters. If 90% confidence interval for the ratio of the geometric least square means of peak plasma concentration, area under curve of test and reference drugs are within 80–125%, then bioequivalence will be established.","PeriodicalId":433543,"journal":{"name":"Pharmaceutical Formulation Design - Recent Practices","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131600539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microcrystalline Cellulose as Pharmaceutical Excipient","authors":"A. Chaerunisaa, Sriwidodo Sriwidodo, M. Abdassah","doi":"10.5772/INTECHOPEN.88092","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.88092","url":null,"abstract":"Microcrystalline cellulose (MCC) is a pure partially depolymerized cellulose synthesized from α-cellulose precursor (type Iβ), obtained as a pulp from fibrous plant material, with mineral acids using hydrochloric acid to reduce the degree of polymerization. The MCC can be synthesized by different processes such as reactive extrusion, enzyme mediated, steam explosion, and acid hydrolysis. It is commonly manufactured by spray-drying the neutralized aqueous slurry of hydrolyzed cellulose. The MCC is a valuable additive in pharmaceutical, food, cosmetic, and other industries. MMC obtained from different sources will differ considerably in chemical composition, structural organization, and physicochemical properties (crystallinity, moisture content, surface area and porous structure, molecular weight, etc.). The high demand of microcrystalline cellulose used in pharmaceutical industries has led to the utilization of locally and naturally occurring materials in the production of microcrystalline cellulose. Many studies on the physicochemical properties of locally produced MCC derived from natural sources have been extensively evaluated in the development of a new natural source for MCC as a substitution of wood, the most abundant one.","PeriodicalId":433543,"journal":{"name":"Pharmaceutical Formulation Design - Recent Practices","volume":"169 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116321257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using Microbubbles as Targeted Drug Delivery to Improve AIDS","authors":"H. Sonaye, Rafik Yakub Shaikh, C. Doifode","doi":"10.5772/INTECHOPEN.87157","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.87157","url":null,"abstract":"No preventive vaccines are available for the treatment of AIDS. To improve therapy, combinational antiretroviral drugs are given; however some patients develop resistance to particular combinational drug. Microbubble-mediated drug delivery technology solves the problem by reducing systemic dose and toxicity. Microbubbles are bubbles smaller than one millimeter in diameter but larger than one micrometer. The general composition of microbubble is gas core. The mechanism of microbubbles through which its delivery increases is sonoporation, the formation of openings in the vasculature, induced by ultrasound-triggered oscil-lations and destruction of microbubbles. Rapid isolation strategy of CD4+ cells is mixing blood and glass microbubbles which then bind with the specific target cells to the microbubble carrying specific antibodies on their surface. The target cells will spontaneously float to the top of the blood vial and can be quickly separated. The microbubbles are particularly used in the diagnosis of AIDS because of their cell isolation techniques which is rapid and inexpensive and their small size to pass through capillary for perfusion in tissue This review demonstrates the problems with the current treatment of the disease and shed light on the remarkable potential of microbubbles to provide more effective treatment and prevention for HIV/AIDS by advancing antiretroviral therapy, gene therapy, immunotherapy, vaccinology, and microbicides.","PeriodicalId":433543,"journal":{"name":"Pharmaceutical Formulation Design - Recent Practices","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127154004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preformulation Studies: An Integral Part of Formulation Design","authors":"P. Patel","doi":"10.5772/INTECHOPEN.82868","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.82868","url":null,"abstract":"When a promising new chemical entity is synthesized, it needs transformation to appropriate formulation in order to show a better and desirable action at appropriate site. Preformulation study is a phase which is initiated once the new molecule is seeded. In a broader way, it deals with studies of physical, chemical, analytical, and pharmaceutical properties related to molecule and provides idea about suitable modification in molecule to show a better performance. Study of these parameters and suitable molecular modification can be linked to generation of effective, safer, stable, and reliable pharmaceutical formulation. Therefore, preformulation study is an approach for generation of pharmaceutical formulation which utilizes knowledge and area application of toxicology, biochemistry, medicinal chemistry, and analytical chemistry. The highlighted chapter is framed with a vision to provide an in-depth knowledge about pharmaceutical formulation development.","PeriodicalId":433543,"journal":{"name":"Pharmaceutical Formulation Design - Recent Practices","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122217254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mahira Zeeshan, Mahwash Mukhtar, Q. Ain, Salman Khan, H. Ali
{"title":"Nanopharmaceuticals: A Boon to the Brain-Targeted Drug Delivery","authors":"Mahira Zeeshan, Mahwash Mukhtar, Q. Ain, Salman Khan, H. Ali","doi":"10.5772/INTECHOPEN.83040","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.83040","url":null,"abstract":"Brain is well known for its multifarious nature and complicated diseases. Brain consists of natural barriers that pose difficulty for the therapeutic agents to reach the brain tissues. Blood-brain barrier is the major barrier while blood-brain tumor barrier, blood-cerebrospinal (CSF) barrier and efflux pump impart additional hindrance. Therapeutic goal is to achieve a considerable drug concentration in the brain tissues in order to obtain desired therapeutic outcomes. To overcome the barriers, nanotechnology was employed in the field of drug delivery and brain targeting. Nanopharmaceuticals are rapidly emerging sub-branch that deals with the drug-loaded nanocarriers or nanomaterials that have unique physicochemical properties and minute size range for penetrating the CNS. Additionally, nanopharmaceuticals can be tailored with functional modalities to achieve active targeting to the brain tissues. The magic behind their therapeutic success is the reduced amount of dose and lesser toxicity, whereby local-izing the therapeutic agent to the specific site. Different types of nanopharmaceuticals like polymeric, lipidic and amphiphilic nanocarriers were administered into the living organisms by exploiting different routes for improved targeted therapy. Therefore, it is essential to throw light on the properties, mechanism and delivery route of the major nanopharmaceuticals that are employed for the brain-specific drug delivery.","PeriodicalId":433543,"journal":{"name":"Pharmaceutical Formulation Design - Recent Practices","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114937844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"pH-Responsive Microgels: Promising Carriers for Controlled Drug Delivery","authors":"Zermina Rashid","doi":"10.5772/INTECHOPEN.82972","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.82972","url":null,"abstract":"The development of a new drug entity is a time-consuming and an expensive process; therefore, the design of new drug delivery systems for an existing drug molecule can significantly improve the safety and efficacy of the drug with improved patient compliance. In recent years, polymeric carriers have been widely investigated and are playing an important role in controlled drug delivery, biomedical applications, and tissue engineering. Microgels are microscopic hydrogels and have attracted much attention as vehicle for drug delivery. Stimuli-responsive MGs are smart drug delivery carriers and have the capability to incorporate and release their host molecules in response to stimuli (pH, ionic strength, and temperature), for targeted drug delivery. Of the many stimuli, alteration in pH is markedly fascinating because of the availability of pH gradients admissible for drug targeting. For example, pH gradients between normal tissues and some pathological sites between the extracellular environment and some cellular compartments, and along the gastrointestinal (GI) tract, are well characterized. Microgels can be fabricated through different methods.","PeriodicalId":433543,"journal":{"name":"Pharmaceutical Formulation Design - Recent Practices","volume":"91 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115951382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}