{"title":"Roles of Trans and ω Fatty Acids in Health; Special References to Their Differences Between Japanese and American Old Men","authors":"A. Takada, F. Shimizu, S. Koba","doi":"10.5772/intechopen.89551","DOIUrl":"https://doi.org/10.5772/intechopen.89551","url":null,"abstract":"Omega and trans-fatty acids play important roles in atherogenesis of vascular system. In this review, we discuss such roles in health; there are much differences in coronary heart disease (CHD) rates between the US and Japan. Fatty acids profiles in the plasma are related to risks of CHD. There have been few studies that compared plasma levels of fatty acids, including trans-fatty acids, in people in Japan and the US. Plasma levels of long-chain omega-3 fatty acids (docosahexae-noic acid [DHA] and eicosapentaenoic acid [EPA]) were higher in Japanese men, and omega-6 fatty acids (e.g., arachidonic acid [AA]) were lower compared with American men. American people had higher plasma levels of the major industrially produced trans-fatty acids (IP-TFAs; elaidic and inoelaidic acids), and levels of the potentially cardioprotective, primarily ruminant-derived trans-fatty acid, palmitoelaidic acid (POA) were higher in Japanese men. Plasma levels of saturated or monounsaturated fatty acids were also higher in American men. Only intakes of preference drinks have significant correlation with plasma levels of palmitoelaidic acid and linoelaidic acid. The higher levels of DHA and EPA, along with the lower levels of the IP-TFAs, are consistent with the markedly lower risk for coronary heart disease in Japan vs. the US.","PeriodicalId":407706,"journal":{"name":"Visions of Cardiomyocyte - Fundamental Concepts of Heart Life and Disease [Working Title]","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127875664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modelling of Genetic Cardiac Diseases","authors":"C. Prajapati, K. Aalto-Setälä","doi":"10.5772/INTECHOPEN.84965","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.84965","url":null,"abstract":"Cardiac disease modeling is crucial to improve our understanding of the mechanism of various cardiac diseases and to discover new therapeutic approaches. Several modeling methods such as animal and computer simulations have been used to elucidate the cardiac diseases’ mechanism and drug responses. However, each modeling technique has its own particular advantages and limitations. Human-based models would be particularly useful to investigate human cardiac diseases because humans and animals have differing cardiac physiologies and drug tolerability. In addition, the phenotype of cardiac diseases and response to therapeutic intervention differ not only between mutations but also among patients. Therefore, such diseases strongly demand the individualized/personalized strategies. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer the striking feature of retain-ing the same genetic information as donor, which guide us to investigate diseases and predict response to drug treatment individually. This feature of hiPSC-CMs is superior to the conventional in vitro modeling of cardiac diseases. Thus far, hiPSC-CMs have been successfully recapitulated many monogenic and also complex genetic cardiac diseases. hiPSC-CMs could be differentiated into different types of cardiomyocytes and non-cardiomyocyte cells, which empower us to understand cardiac chamber-specific arrhythmias such as atrial fibrillation and ventricular tachycardia.","PeriodicalId":407706,"journal":{"name":"Visions of Cardiomyocyte - Fundamental Concepts of Heart Life and Disease [Working Title]","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123847933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Right Heart Adaptation to Left Ventricular STEMI in Rats","authors":"R. Schreckenberg, K. Schlüter","doi":"10.5772/INTECHOPEN.84868","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.84868","url":null,"abstract":"Development of right ventricular (RV) failure in patients after ST-segment elevation myocardial infarction (STEMI) is common. However, a systematic analysis of chamber-specific changes in the expression of genes linked to cardiac function, apoptosis, fibrosis, receptor responsiveness, and inflammation is lacking. Postischemic remodeling was analyzed in rats that received STEMI in the closed chest mode. Rats were sacrificed at day 1, 3, 7, and 120 after surgery. The mRNA expression of genes was quantified by a real-time RT-PCR. Echocardiography was performed after 120 days. Organ weights and systemic blood pressure were determined in addition. Rats developed left and RV dysfunction within 7 days after ischemia/reperfusion and this lasted until the end of the experiments. However, adaptation to ischemia/reperfusion differed significantly between both ventricles. In the LV, a high expression of MMP12, a neutrophile-specific elastase, indicated a significant inflammatory responsiveness that did not occur in RV. A number of differentially regulated genes in the RV exceeded that of the LV at day 3. Postinfarction RV failure is common in rats with ischemia/reperfusion of the left arterial descending aorta. It is associated with severe RV remodeling that occurred delayed to that of the LV. Changes in RV are independent of the initial inflammation.","PeriodicalId":407706,"journal":{"name":"Visions of Cardiomyocyte - Fundamental Concepts of Heart Life and Disease [Working Title]","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128313523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Myocardial Infarction and Circadian Rhythm","authors":"I. Škrlec, S. Marić, A. Včev","doi":"10.5772/INTECHOPEN.83393","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.83393","url":null,"abstract":"Human physiological activity and condition during illness are under the control of the circadian rhythm. Circadian rhythms handle a wide diversity of physiological and metabolic functions, and the interruption of these rhythms has been linked to obesity, sleep disorders, metabolic and psychological disorders, and cardiovascular events such as myocardial infarction (MI), stroke, and vascular death. Disruption of circadian rhythms increases the risk of developing myocardial infarction, indicating that circadian genes might play an essential role in determining disease susceptibility. It is well known that many cardiovascular processes show daily variations depending on the circadian rhythm (blood pressure, heart rate), and the gene expression of the cardiomyocyte circadian clock influences myocardial contractile function, metabolism, and other gene expressions. We present a review of the latest knowledge on the impact of circadian rhythm and circadian rhythm genes on myocardial infarction. Today, in a time of personalized medicine, it is essential to know each person’s circadian rhythm for its treatment and possible inclusion in the diagnostic procedures.","PeriodicalId":407706,"journal":{"name":"Visions of Cardiomyocyte - Fundamental Concepts of Heart Life and Disease [Working Title]","volume":"183 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127043804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Schild, Sascha I. Ricciardi, Jens G. Hellige, R. Vogel, N. Arenja
{"title":"Current Pathophysiological and Genetic Aspects of Dilated Cardiomyopathy","authors":"D. Schild, Sascha I. Ricciardi, Jens G. Hellige, R. Vogel, N. Arenja","doi":"10.5772/INTECHOPEN.83567","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.83567","url":null,"abstract":"Dilated cardiomyopathy is the most common form of cardiomyopathy and the second leading cause of left ventricular dysfunction with highly variable clinical presentation and prognosis. The clinical courses vary and are strongly heterogeneous, ranging from asymptomatic patients to those suffering from intractable heart failure or sudden cardiac death due to arrhythmias. Previous studies have reported a 10 years cardiovascular mortality up to 40% in developed countries, due to advanced heart failure or sudden cardiac death. However, the prognosis of dilated cardiomyopathy patients is variable and depends on multiple risk factors. This chapter provides a review of dilated cardiomyopathy with specific focus on the pathophysiological aspects and genetic etiology of the disease.","PeriodicalId":407706,"journal":{"name":"Visions of Cardiomyocyte - Fundamental Concepts of Heart Life and Disease [Working Title]","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126776657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}