Minds Mach.最新文献

筛选
英文 中文
A Genealogical Approach to Algorithmic Bias 算法偏差的家谱学方法
Minds Mach. Pub Date : 2024-05-02 DOI: 10.2139/ssrn.4734082
M. Ziosi, David Watson, Luciano Floridi
{"title":"A Genealogical Approach to Algorithmic Bias","authors":"M. Ziosi, David Watson, Luciano Floridi","doi":"10.2139/ssrn.4734082","DOIUrl":"https://doi.org/10.2139/ssrn.4734082","url":null,"abstract":"The Fairness, Accountability, and Transparency (FAccT) literature tends to focus on bias as a problem that requires ex post solutions (e.g. fairness metrics), rather than addressing the underlying social and technical conditions that (re)produce it. In this article, we propose a complementary strategy that uses genealogy as a constructive, epistemic critique to explain algorithmic bias in terms of the conditions that enable it. We focus on XAI feature attributions (Shapley values) and counterfactual approaches as potential tools to gauge these conditions and offer two main contributions. One is constructive: we develop a theoretical framework to classify these approaches according to their relevance for bias as evidence of social disparities. We draw on Pearl’s ladder of causation (Causality: models, reasoning, and inference. Cambridge University Press, Cambridge, 2000, Causality, 2nd edn. Cambridge University Press, Cambridge, 2009. https://doi.org/10.1017/CBO9780511803161) to order these XAI approaches concerning their ability to answer fairness-relevant questions and identify fairness-relevant solutions. The other contribution is critical: we evaluate these approaches in terms of their assumptions about the role of protected characteristics in discriminatory outcomes. We achieve this by building on Kohler-Hausmann’s (Northwest Univ Law Rev 113(5):1163–1227, 2019) constructivist theory of discrimination. We derive three recommendations for XAI practitioners to develop and AI policymakers to regulate tools that address algorithmic bias in its conditions and hence mitigate its future occurrence.","PeriodicalId":404219,"journal":{"name":"Minds Mach.","volume":"5 12","pages":"9"},"PeriodicalIF":0.0,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141020513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信