Journal of Computer Science & Systems Biology最新文献

筛选
英文 中文
Combination of Ant Colony Optimization and Bayesian Classification for Feature Selection in a Bioinformatics Dataset 结合蚁群优化与贝叶斯分类的生物信息学数据集特征选择
Journal of Computer Science & Systems Biology Pub Date : 2009-06-15 DOI: 10.4172/JCSB.1000031
Mehdi Hosseinzadeh Aghdam, J. Tanha, A. Naghsh-Nilchi, Mohammad Ehsan Basiri
{"title":"Combination of Ant Colony Optimization and Bayesian Classification for Feature Selection in a Bioinformatics Dataset","authors":"Mehdi Hosseinzadeh Aghdam, J. Tanha, A. Naghsh-Nilchi, Mohammad Ehsan Basiri","doi":"10.4172/JCSB.1000031","DOIUrl":"https://doi.org/10.4172/JCSB.1000031","url":null,"abstract":"Feature selection is widely used as the first stage of classification task to reduce the dimension of problem, decrease noise, improve speed and relieve memory constraints by the elimination of irrelevant or redundant features. One approach in the feature selection area is employing population-based optimization algorithms such as particle swarm optimization (PSO)-based method and ant colony optimization (ACO)-based method. Ant colony optimization algorithm is inspired by observation on real ants in their search for the shortest paths to food sources. Protein function prediction is an important problem in functional genomics. Typically, protein sequences are represented by feature vectors. A major problem of protein datasets that increase the complexity of classification models is their large number of features. This paper empowers the ant colony optimization algorithm by enabling the ACO to select features for a Bayesian classification method. The naive Bayesian classifier is a straightforward and frequently used method for supervised learning. It provides a flexible way for dealing with any number of features or classes, and is based on probability theory. This paper then compares the performance of the proposed ACO algorithm against the performance of a standard binary particle swarm optimization algorithm on the task of selecting features on Postsynaptic dataset. The criteria used for this comparison are maximizing predictive accuracy and finding the smallest subset of features. Simulation results on Postsynaptic dataset show that proposed method simplifies features effectively and obtains a higher classification accuracy compared to other feature selection methods.","PeriodicalId":402018,"journal":{"name":"Journal of Computer Science & Systems Biology","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114948669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信