{"title":"ON THE FAMILY OF ELLIPTIC CURVES <i>X</i> + 1/<i>X</i> + <i>Y</i> + 1/<i>Y</i> + <i>t</i> = 0.","authors":"Abhishek Juyal, Dustin Moody","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>We study various properties of the family of elliptic curves <i>x</i>+1/<i>x</i>+<i>y</i>+1/<i>y</i>+<i>t</i> = 0, which is isomorphic to the Weierstrass curve <dispformula> <math> <mrow><msub><mi>E</mi> <mi>t</mi></msub> <mspace></mspace> <mo>:</mo> <msup><mi>Y</mi> <mn>2</mn></msup> <mo>=</mo> <mi>X</mi> <mrow><mo>(</mo> <mrow><msup><mi>X</mi> <mn>2</mn></msup> <mo>+</mo> <mrow><mo>(</mo> <mrow> <mfrac> <mrow><msup><mi>t</mi> <mn>2</mn></msup> </mrow> <mn>4</mn></mfrac> <mo>-</mo> <mn>2</mn></mrow> <mo>)</mo></mrow> <mi>X</mi> <mo>+</mo> <mn>1</mn></mrow> <mo>)</mo></mrow> <mo>.</mo></mrow> </math> </dispformula> . This equation arises from the study of the Mahler measure of polynomials. We show that the rank of <math> <mrow><msub><mi>E</mi> <mi>t</mi></msub> <mo>(</mo> <mover><mi>Q</mi> <mo>¯</mo></mover> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo></mrow> </math> is 0 and the torsion subgroup of <math> <mrow><msub><mi>E</mi> <mi>t</mi></msub> <mo>(</mo> <mi>Q</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo></mrow> </math> is isomorphic to <math><mrow><mi>Z</mi> <mo>∕</mo> <mn>4</mn> <mi>Z</mi></mrow> </math> . Over the rational field <math><mi>Q</mi></math> we obtain infinite subfamilies of ranks (at least) one and two, and find specific instances of <i>E<sub>t</sub></i> with rank 5 and 6. We also determine all possible torsion subgroups of <math> <mrow><msub><mi>E</mi> <mi>t</mi></msub> <mo>(</mo> <mi>Q</mi> <mo>)</mo></mrow> </math> and conclude with some results regarding integral points in arithmetic progression on <i>E<sub>t</sub></i> .</p>","PeriodicalId":36228,"journal":{"name":"Integers","volume":"21 ","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8370034/pdf/nihms-1729045.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39328304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}