Path Integrals in Physics最新文献

筛选
英文 中文
Finite-dimensional Gaussian integrals 有限维高斯积分
Path Integrals in Physics Pub Date : 2018-10-08 DOI: 10.1201/9781315274607-8
{"title":"Finite-dimensional Gaussian integrals","authors":"","doi":"10.1201/9781315274607-8","DOIUrl":"https://doi.org/10.1201/9781315274607-8","url":null,"abstract":"","PeriodicalId":350913,"journal":{"name":"Path Integrals in Physics","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116689764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum field theory: the path-integral approach 量子场论:路径积分方法
Path Integrals in Physics Pub Date : 2018-10-08 DOI: 10.1887/0750307137/B1054V2C1
M. Chaichian, A. Demichev
{"title":"Quantum field theory: the path-integral approach","authors":"M. Chaichian, A. Demichev","doi":"10.1887/0750307137/B1054V2C1","DOIUrl":"https://doi.org/10.1887/0750307137/B1054V2C1","url":null,"abstract":"","PeriodicalId":350913,"journal":{"name":"Path Integrals in Physics","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126758499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Path integrals in statistical physics 统计物理中的路径积分
Path Integrals in Physics Pub Date : 2018-10-08 DOI: 10.1887/0750307137/B1054V2C2
M. Chaichian, A. Demichev
{"title":"Path integrals in statistical physics","authors":"M. Chaichian, A. Demichev","doi":"10.1887/0750307137/B1054V2C2","DOIUrl":"https://doi.org/10.1887/0750307137/B1054V2C2","url":null,"abstract":"","PeriodicalId":350913,"journal":{"name":"Path Integrals in Physics","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126185136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C Proof of lemma 2.1 used to derive the Bohr–Sommerfeld quantization condition 用来推导玻尔-索默菲尔德量化条件的引理2.1的证明
Path Integrals in Physics Pub Date : 2018-10-03 DOI: 10.1201/9781315273358-10
{"title":"C Proof of lemma 2.1 used to derive the Bohr–Sommerfeld quantization condition","authors":"","doi":"10.1201/9781315273358-10","DOIUrl":"https://doi.org/10.1201/9781315273358-10","url":null,"abstract":"","PeriodicalId":350913,"journal":{"name":"Path Integrals in Physics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123698705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
D Tauberian theorem D陶伯利定理
Path Integrals in Physics Pub Date : 2018-10-03 DOI: 10.1201/9781315273358-11
{"title":"D Tauberian theorem","authors":"","doi":"10.1201/9781315273358-11","DOIUrl":"https://doi.org/10.1201/9781315273358-11","url":null,"abstract":"","PeriodicalId":350913,"journal":{"name":"Path Integrals in Physics","volume":"161 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133429527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Path integrals in classical theory 经典理论中的路径积分
Path Integrals in Physics Pub Date : 2018-10-03 DOI: 10.1887/0750307137/b892v1c2
M. Chaichian, A. Demichev
{"title":"Path integrals in classical theory","authors":"M. Chaichian, A. Demichev","doi":"10.1887/0750307137/b892v1c2","DOIUrl":"https://doi.org/10.1887/0750307137/b892v1c2","url":null,"abstract":"","PeriodicalId":350913,"journal":{"name":"Path Integrals in Physics","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114927620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Path integrals in quantum mechanics 量子力学中的路径积分
Path Integrals in Physics Pub Date : 2018-10-03 DOI: 10.1201/9781315273358-8
Dennis V Perepelitsa
{"title":"Path integrals in quantum mechanics","authors":"Dennis V Perepelitsa","doi":"10.1201/9781315273358-8","DOIUrl":"https://doi.org/10.1201/9781315273358-8","url":null,"abstract":"We present the path integral formulation of quantum mechanics and demonstrate its equivalence to the Schrödinger picture. We apply the method to the free particle and quantum harmonic oscillator, investigate the Euclidean path integral, and discuss other applications.","PeriodicalId":350913,"journal":{"name":"Path Integrals in Physics","volume":"299 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115862675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A General pattern of different ways of construction and applications of path integrals 路径积分的不同构造和应用的一般模式
Path Integrals in Physics Pub Date : 2018-10-03 DOI: 10.1201/9781315273358-9
{"title":"A General pattern of different ways of construction and applications of path integrals","authors":"","doi":"10.1201/9781315273358-9","DOIUrl":"https://doi.org/10.1201/9781315273358-9","url":null,"abstract":"","PeriodicalId":350913,"journal":{"name":"Path Integrals in Physics","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124733768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信