Proposed for presentation at the International Conference on Hydrogen Safety (ICHS) held September 21-24, 2021 in ,最新文献

筛选
英文 中文
Hydrogen compatibility of structural materials in natural gas networks. 天然气管网结构材料的氢相容性。
C. San Marchi, R. Shrestha, J. Ronevich
{"title":"Hydrogen compatibility of structural materials in natural gas networks.","authors":"C. San Marchi, R. Shrestha, J. Ronevich","doi":"10.2172/1888399","DOIUrl":"https://doi.org/10.2172/1888399","url":null,"abstract":"There is growing interest in utilizing existing infrastructure for storage and distribution of hydrogen. Gaseous hydrogen, for example, could be added to natural gas in the short-term, whereas entire systems can be converted to transmission and distribution networks for hydrogen. Many active programs around the world are exploring the safety and feasibility of adding hydrogen to these networks. Concerns have been raised about the structural integrity of materials in these systems when exposed to hydrogen. In general, the effects of hydrogen on these materials are grossly misunderstood. Hydrogen unequivocally degrades fatigue and fracture resistance of structural steels in these systems, even for low hydrogen partial pressure (~1 bar). In most systems, however, hydrogen effects will not be apparent because the stresses in these systems remain very low. Another misunderstanding results from the kinetics of the hydrogen effects: hydrogen degrades fatigue and fracture properties immediately upon exposure to gaseous hydrogen, and those effects disappear when the hydrogen environment is removed, even after prolonged exposure. There is also a misperception that materials selection can mitigate hydrogen effects. While some classes of materials perform better in hydrogen environments than other classes, for most practical circumstances, the range of response for a given class of material in gaseous hydrogen environments is rather narrow. These observations can be systematically characterized by considering the intersection of materials, environmental, and mechanical variables associated with the service application. Indeed, any safety assessment of a hydrogen pressure system must quantitatively consider these aspects. In this report, we quantitatively evaluate the importance of the materials, environmental, and mechanical variables in the context of hydrogen additions to natural gas piping and pipeline systems with the aim of providing an informed perspective on parameters relevant for assessing structural integrity of natural gas systems in the presence of gaseous hydrogen.","PeriodicalId":339846,"journal":{"name":"Proposed for presentation at the International Conference on Hydrogen Safety (ICHS) held September 21-24, 2021 in ,","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124873859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信